论文标题

在Cutic和(Claw,H)中的最小统治集中

On Minimum Dominating Sets in cubic and (claw,H)-free graphs

论文作者

Bouquet, Valentin, Delbot, François, Picouleau, Christophe, Rovedakis, Stéphane

论文摘要

给定图形$ g =(v,e)$,$ s \ subseteq v $,如果v \ setminus s $中的每个$ v \ aught of $ s $的元素相邻,则是一个主体集。最低统治设置问题要求具有最低基数的主导套装。众所周知,即使$ g $是无爪形的图,它的决策版本也是$ NP $ -COMPLETE。对于$ h $最多有六个顶点时,我们为$(Claw,h)$ - 免费图的最小主导设置问题提供了复杂性二分法。在一个中间步骤中,我们表明,最小主导设置问题是Cubic Graphs的$ NP $ complete。

Given a graph $G=(V,E)$, $S\subseteq V$ is a dominating set if every $v\in V\setminus S$ is adjacent to an element of $S$. The Minimum Dominating Set problem asks for a dominating set with minimum cardinality. It is well known that its decision version is $NP$-complete even when $G$ is a claw-free graph. We give a complexity dichotomy for the Minimum Dominating Set problem for the class of $(claw, H)$-free graphs when $H$ has at most six vertices. In an intermediate step we show that the Minimum Dominating Set problem is $NP$-complete for cubic graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源