论文标题
关于投影伪hyperbolic品种的Lang-Vojta猜想
The Lang-Vojta conjectures on projective pseudo-hyperbolic varieties
论文作者
论文摘要
这些笔记是从5月13日至5月17日在蒙特利尔的UQAM在七磷酸酯近似和价值分布理论讲习班期间在蒙特利尔的UQAM发出的迷你课程的。我们首先概述了Lang-vojta对伪Hyperbolic投射品种的猜想。这些猜想与双曲线的各种不同概念有关。我们从Brody双曲线开始,并讨论随后部分中算术几何形状和代数几何形状中的双曲性概念。我们慢慢地朝着Lang-vojta的猜想的最一般版本迈进,并提供了所有猜想的摘要,以及对最近进步的调查。
These notes grew out of a mini-course given from May 13th to May 17th at UQAM in Montreal during a workshop on Diophantine Approximation and Value Distribution Theory. We start with an overview of Lang-Vojta's conjectures on pseudo-hyperbolic projective varieties. These conjectures relate various different notions of hyperbolicity. We begin with Brody hyperbolicity and discuss conjecturally related notions of hyperbolicity in arithmetic geometry and algebraic geometry in subsequent sections. We slowly work our way towards the most general version of Lang-Vojta's conjectures and provide a summary of all the conjectures, as well as a survey of recent progress.