论文标题
基于Wigner-yanase偏斜信息的更严格的不确定性关系,可观察到的信息
Tighter uncertainty relations based on Wigner-Yanase skew information for observables and channels
论文作者
论文摘要
不确定性原理是量子力学的基础。它反映了微观颗粒运动的基本定律。 Wigner-Yanase偏斜信息作为量子不确定性的量度,用于表征状态和可观察到的固有特征。在本文中,我们主要研究基于偏斜信息的量子机械可观察物和量子通道的总和不确定性关系。我们以$ n $ observables的wigner-yanase偏斜信息来建立一个新的不确定性关系,这是两个不兼容的可观察到的饱和(因此它作为平等)。我们还通过使用偏斜的信息来展示两种任意有限$ n $量子通道的不确定性关系。我们的不确定性关系比现有关系更紧密。提供了详细的示例。
Uncertainty principle is the basis of quantum mechanics. It reflects the basic law of the movement of microscopic particles. Wigner-Yanase skew information, as a measure of quantum uncertainties, is used to characterize the intrinsic features of the state and the observable. In this paper, we mainly investigate the sum uncertainty relations for both quantum mechanical observables and quantum channels based on skew information. We establish a new uncertainty relation in terms of Wigner-Yanase skew information for $n$ observables, which is saturated (thus it holds as equality) for two incompatible observables. We also present two uncertainty relations for arbitrary finite $N$ quantum channels by using skew information. Our uncertainty relations have tighter lower bounds than the existing ones. Detailed examples are provided.