论文标题
GATCLUSTER:用于图像集群的自我监督高斯注意网络
GATCluster: Self-Supervised Gaussian-Attention Network for Image Clustering
论文作者
论文摘要
我们提出了一个用于图像聚类(GATCLUSTER)的自我监督的高斯注意网络。 GatCluster不是首先提取中间功能,然后执行传统的聚类算法,而是直接输出语义群集标签而无需进一步的后处理。从理论上讲,我们给出了标签特征定理,以确保学习的特征是单热编码的矢量,并且避免了琐碎的解决方案。要以完全无监督的方式训练GATCLUSTER,我们设计了四个自学任务,具有转换不变性,可分离性最大化,熵分析和注意映射的限制。具体而言,转换不变性和可分离性最大化任务学习了样本对之间的关系。熵分析任务旨在避免琐碎的解决方案。为了捕获面向对象的语义,我们设计了一种自我监督的注意机制,其中包括参数化的注意模块和软意见损失。在培训过程中,所有用于聚类的指导信号都是自我生成的。此外,我们开发了一种两步学习算法,该算法可用于聚类大型图像的内存有效。与最先进的图像聚类基准相比,广泛的实验证明了我们提出的方法的优越性。我们的代码已在https://github.com/niuchuangnn/gatcluster上公开提供。
We propose a self-supervised Gaussian ATtention network for image Clustering (GATCluster). Rather than extracting intermediate features first and then performing the traditional clustering algorithm, GATCluster directly outputs semantic cluster labels without further post-processing. Theoretically, we give a Label Feature Theorem to guarantee the learned features are one-hot encoded vectors, and the trivial solutions are avoided. To train the GATCluster in a completely unsupervised manner, we design four self-learning tasks with the constraints of transformation invariance, separability maximization, entropy analysis, and attention mapping. Specifically, the transformation invariance and separability maximization tasks learn the relationships between sample pairs. The entropy analysis task aims to avoid trivial solutions. To capture the object-oriented semantics, we design a self-supervised attention mechanism that includes a parameterized attention module and a soft-attention loss. All the guiding signals for clustering are self-generated during the training process. Moreover, we develop a two-step learning algorithm that is memory-efficient for clustering large-size images. Extensive experiments demonstrate the superiority of our proposed method in comparison with the state-of-the-art image clustering benchmarks. Our code has been made publicly available at https://github.com/niuchuangnn/GATCluster.