论文标题
有理G-sheves和合理的G-Mackey函子之间的等效性
The equivalence between rational G-sheaves and rational G-Mackey functors for profinite G
论文作者
论文摘要
对于g to grinite组,我们在理性的G-Mackey函子和某些G-Sheaves的一定全部子类别之间构建了等效性,该g-sheaves在G封闭的G型G-sheaves的空间上称为Weyl-G-Sheaves。该子类别由那些在亚组K上茎的茎构成K固定的滑带。 这将有限的Thévenaz和Webb以及Greenlees的有限G-Mackey函子的分类扩展到了新的示例。此外,正如第二作者的论文中给出的那样,这种对等有助于对Profinite G的理性G-Spectra分类。
For G a profinite group, we construct an equivalence between rational G-Mackey functors and a certain full subcategory of G-sheaves over the space of closed subgroups of G called Weyl-G-sheaves. This subcategory consists of those sheaves whose stalk over a subgroup K is K-fixed. This extends the classification of rational G-Mackey functors for finite G of Thévenaz and Webb, and Greenlees and May to a new class of examples. Moreover, this equivalence is instrumental in the classification of rational G-spectra for profinite G, as given in the second author's thesis.