论文标题

通过变异量子通气计算过渡幅度

Calculating transition amplitudes by variational quantum deflation

论文作者

Ibe, Yohei, Nakagawa, Yuya O., Earnest, Nathan, Yamamoto, Takahiro, Mitarai, Kosuke, Gao, Qi, Kobayashi, Takao

论文摘要

变异量子本质量(VQE)是应用近期量子计算机的吸引人的候选人。 [Higgot等人,Quantum 3,156(2019)]中引入的一种被称为变分量子通气(VQD)的技术已扩大了VQE框架找到汉密尔顿激发态的能力。但是,尚未提出VQD在不使用任何昂贵的Hadamard-test样电路的情况下,没有评估VQD发现的过渡幅度的方法,尽管它对于计算系统的计算特性(例如分子的振荡器强度)的重要性。在这里,我们提出了一种评估VQD获得的特征态之间的过渡幅度,避免了任何Hadamard-test样电路。我们的方法仅依赖于估计两种状态之间重叠的能力,因此它不限于VQD特征态并适用于一般情况。为了支持我们的方法的重要性,我们提供了三种先前提出的方法的全面比较,以在噪音的情况下找到三个分子(氢化锂,重氮烯和偶氮)的数值模拟的激发态,并发现VQD方法在三种方法中表现出最佳性能。最后,我们通过计算氢化锂的振荡器强度来证明我们的方法的有效性,从而比较了数值模拟的结果和云启用量子计算机IBMQ Rome上的数值模拟和实用硬件实验的结果。我们的结果说明了VQD找到激发态并扩大其对各种量子系统的适用性的优势。

Variational quantum eigensolver (VQE) is an appealing candidate for the application of near-term quantum computers. A technique introduced in [Higgot et al., Quantum 3, 156 (2019)], which is named variational quantum deflation (VQD), has extended the ability of the VQE framework for finding excited states of a Hamiltonian. However, no method to evaluate transition amplitudes between the eigenstates found by the VQD without using any costly Hadamard-test-like circuit has been proposed despite its importance for computing properties of the system such as oscillator strengths of molecules. Here we propose a method to evaluate transition amplitudes between the eigenstates obtained by the VQD avoiding any Hadamard-test-like circuit. Our method relies only on the ability to estimate overlap between two states, so it does not restrict to the VQD eigenstates and applies for general situations. To support the significance of our method, we provide a comprehensive comparison of three previously proposed methods to find excited states with numerical simulation of three molecules (lithium hydride, diazene, and azobenzene) in a noiseless situation and find that the VQD method exhibits the best performance among the three methods. Finally, we demonstrate the validity of our method by calculating the oscillator strength of lithium hydride, comparing results from numerical simulations and real-hardware experiments on the cloud enabled quantum computer IBMQ Rome. Our results illustrate the superiority of the VQD to find excited states and widen its applicability to various quantum systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源