论文标题
铜酸盐对密度波状态的原子级电子结构与超导性共存
Atomic-scale Electronic Structure of the Cuprate Pair Density Wave State Coexisting with Superconductivity
论文作者
论文摘要
掺杂孔的铜层的定义特征是$ d $ - 波高温超导性。然而,现在强烈的理论兴趣集中在配对密度波状态(PDW)是否可以与铜酸盐超导性并存(D. F. Agterberg等人,对凝结物质物理学的年度评论11,231(2020))。在这里,我们使用强耦合的平均库层理论来对八个单元周期性的原子尺度电子结构进行建模,$ d $ symmetry form form form form form form form form form form form form form form form form form form form(PDW)状态与$ d $ -wave supercoductivity(DSC)共存。从该PDW+DSC模型中,在BI $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ o $ $ $ _8 $的BI $ _2 $ _2 $ _2 $ _8 $的终端生物表面上预测了Bogoliubov Quasiparticle状态N(R,E)的原子分辨密度。 PDW+DSC模型预测包括n(r,e)的单个单元内结构和周期性调制,相干峰值能量$Δ_p$(r)的调制以及散射 - 波向量空间(q-space)中Bogoliubov Quasiparticle干扰的特征。所有这些预测与相应实验之间的一致性表明,轻孔掺杂的BI $ _2 $ _2 $ _2 $ cacu $ _2 $ o $ _8 $确实包含PDW+DSC状态。此外,在模型中,PDW+DSC状态在临界孔密度p*处与纯DSC状态不稳定,实验中发生了等效现象。所有这些结果都与一张图片一致,在该图片中,丘比特平移对称性破坏状态为PDW,观察到的电荷调制是其结果,抗焦点pseudogap是PDW状态的,并且p* 〜19%的丘比特临界点是由于该PDW的消失而导致的。
The defining characteristic of hole-doped cuprates is $d$-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity (D. F. Agterberg et al., Annual Review of Condensed Matter Physics 11, 231 (2020)). Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, $d$-symmetry form factor, pair density wave (PDW) state coexisting with $d$-wave superconductivity (DSC). From this PDW+DSC model, the atomically-resolved density of Bogoliubov quasiparticle states N(r,E) is predicted at the terminal BiO surface of Bi$_2$Sr$_2$CaCu$_2$O$_8$ and compared with high-precision electronic visualization experiments using spectroscopic imaging STM. The PDW+DSC model predictions include the intra-unit-cell structure and periodic modulations of N(r,E), the modulations of the coherence peak energy $Δ_p$ (r), and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space (q-space). Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi$_2$Sr$_2$CaCu$_2$O$_8$ does contain a PDW+DSC state. Moreover, in the model the PDW+DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ~ 19% occurs due to disappearance of this PDW.