论文标题

用于几乎最佳顶点容错跨度的多项式时间算法

A Polynomial Time Algorithm for Almost Optimal Vertex Fault Tolerant Spanners

论文作者

Agarwal, Udit

论文摘要

我们介绍了第一个多项式时间算法,用于f顶点容差启动器问题,该问题几乎达到了最佳的扳手大小。我们用于构建F顶点容射扳手的算法取$ O(K \ CDOT N \ CDOT M^2 \ CDOT W)$ time,其中W是最大边缘重量,并构造了大小$ O(N^{1+1/K} F^{1+1/K} f^{1-1/K} {1-1/k} \ cdot(1+1/k} \ cdot(\ cdot n)^1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1。我们的扳手几乎具有最佳的尺寸,最多是最差的案例尺寸上的上限。在这项工作之前,没有其他多项式时间算法因构建具有最佳尺寸的F顶点耐受性跨度而闻名。 我们的算法基于首先贪婪地构建了一个击球集,用于收集重量的重量路径,最多是$ k \ cdot w(u,v)$之间的边缘u和v(u,v)之间,然后使用此组来决定是否需要将边缘(u,v)添加到增长的范围中。

We present the first polynomial time algorithm for the f vertex fault tolerant spanner problem, which achieves almost optimal spanner size. Our algorithm for constructing f vertex fault tolerant spanner takes $O(k\cdot n\cdot m^2 \cdot W)$ time, where W is the maximum edge weight, and constructs a spanner of size $O(n^{1+1/k}f^{1-1/k}\cdot (\log n)^{1-1/k})$. Our spanner has almost optimal size and is at most a $\log n$ factor away from the upper bound on the worst-case size. Prior to this work, no other polynomial time algorithm was known for constructing f vertex fault tolerant spanner with optimal size. Our algorithm is based on first greedily constructing a hitting set for the collection of paths of weight at most $k \cdot w(u,v)$ between the endpoints u and v of an edge (u,v) and then using this set to decide whether the edge (u,v) needs to be added to the growing spanner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源