论文标题

丝带,聚合物和分层材料中的Chern数和轨道磁化

Chern number and orbital magnetization in ribbons, polymers, and layered materials

论文作者

Drigo, Enrico, Resta, Raffaele

论文摘要

轨道磁化的现代理论在非相互作用的层面上介绍了晶体:其中可观察到的是几何积分的K空间积分。或者,磁化剂在R空间中接受局部表示,即可能解决非晶体和/或不均匀材料的“密度”。 Chern号码承认相似的密度。在这里,我们提供了丝带,聚合物和分层材料的配方,其中K空间和R空间积分都输入了两个可观察物的定义。

The modern theory of orbital magnetization addresses crystalline materials at the noninteracting level: therein the observable is the k-space integral of a geometrical integrand. Alternatively, magnetization admits a local representation in r space, i.e. a "density" which may address noncrystalline and/or inhomogeneous materials as well; the Chern number admits an analogous density. Here we provide the formulation for ribbons, polymers, and layered materials, where both k-space and r-space integrations enter the definition of the two observables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源