论文标题
丝带,聚合物和分层材料中的Chern数和轨道磁化
Chern number and orbital magnetization in ribbons, polymers, and layered materials
论文作者
论文摘要
轨道磁化的现代理论在非相互作用的层面上介绍了晶体:其中可观察到的是几何积分的K空间积分。或者,磁化剂在R空间中接受局部表示,即可能解决非晶体和/或不均匀材料的“密度”。 Chern号码承认相似的密度。在这里,我们提供了丝带,聚合物和分层材料的配方,其中K空间和R空间积分都输入了两个可观察物的定义。
The modern theory of orbital magnetization addresses crystalline materials at the noninteracting level: therein the observable is the k-space integral of a geometrical integrand. Alternatively, magnetization admits a local representation in r space, i.e. a "density" which may address noncrystalline and/or inhomogeneous materials as well; the Chern number admits an analogous density. Here we provide the formulation for ribbons, polymers, and layered materials, where both k-space and r-space integrations enter the definition of the two observables.