论文标题
图形上数据标记的分配流:收敛与稳定性
Assignment Flows for Data Labeling on Graphs: Convergence and Stability
论文作者
论文摘要
最近在J. Math中引入的任务流。成像和视觉58/2(2017)构成了一个高维动力系统,该系统在基本统计歧管上演变,并对任何度量空间中给出的数据进行上下文标记(分类)。给定图形索引的顶点数据点并定义了社区系统。这些邻域以及非负权重参数通过通过信息几何形状的仿射电子连接引起的几何平均来定义标签分配到数据点的正则化。关于进化游戏动力学,分配流可以被描述为一个大型复制器方程系统,该系统与几何平均相结合。本文确定了权重参数的条件,以确保连续时间分配流动到积分分配(标签)的收敛性,最多可忽略不计的情况,而在实践中使用真实数据时不会遇到这些情况。此外,我们对流量的吸引子进行了分类,并量化了吸引力的相应盆地。这为分配流提供了收敛保证,该分配流程扩展到离散时间分配流,该分配流程将runge-kutta-munthe-kaas方案应用于分配流的数值几何整合。几个反例表明,违反条件可能需要关于上下文数据分类的分配流动的不利行为。
The assignment flow recently introduced in the J. Math. Imaging and Vision 58/2 (2017), constitutes a high-dimensional dynamical system that evolves on an elementary statistical manifold and performs contextual labeling (classification) of data given in any metric space. Vertices of a given graph index the data points and define a system of neighborhoods. These neighborhoods together with nonnegative weight parameters define regularization of the evolution of label assignments to data points, through geometric averaging induced by the affine e-connection of information geometry. Regarding evolutionary game dynamics, the assignment flow may be characterized as a large system of replicator equations that are coupled by geometric averaging. This paper establishes conditions on the weight parameters that guarantee convergence of the continuous-time assignment flow to integral assignments (labelings), up to a negligible subset of situations that will not be encountered when working with real data in practice. Furthermore, we classify attractors of the flow and quantify corresponding basins of attraction. This provides convergence guarantees for the assignment flow which are extended to the discrete-time assignment flow that results from applying a Runge-Kutta-Munthe-Kaas scheme for numerical geometric integration of the assignment flow. Several counter-examples illustrate that violating the conditions may entail unfavorable behavior of the assignment flow regarding contextual data classification.