论文标题

使用机器学习的自动检测器仿真和重建参数化

Automated detector simulation and reconstruction parametrization using machine learning

论文作者

Benjamin, D., Chekanov, S. V., Hopkins, W., Li, Y., Love, J. R.

论文摘要

在高能量物理学中,迅速应用检测器对物理对象的响应对物理对象的影响(例如电子,muons,颗粒淋浴)至关重要。当前可用的工具用于从真实级物理对象转换为重建检测器级物理对象的工具涉及手动定义分辨率功能。这些分辨率函数通常衍生在与分辨率相关的变量的箱中(例如,伪行和横向动量)。此过程很耗时,需要在探测器条件发生变化时进行手动更新,并且可能会错过重要的相关性。机器学习提供了一种自动化构建这些真实对象转换的过程的方法,并可以为任何给定的一组输入变量捕获复杂的相关性。具有足够优化的机器学习算法可以具有广泛的应用:通过使用更好的检测器表示来改善现象学研究,从而仅通过仅在相位空间的有趣部分中模拟事件以及对新物理学的未来实验敏感性进行研究,从而更有效地生产Geant4模拟。

Rapidly applying the effects of detector response to physics objects (e.g. electrons, muons, showers of particles) is essential in high energy physics. Currently available tools for the transformation from truth-level physics objects to reconstructed detector-level physics objects involve manually defining resolution functions. These resolution functions are typically derived in bins of variables that are correlated with the resolution (e.g. pseudorapidity and transverse momentum). This process is time consuming, requires manual updates when detector conditions change, and can miss important correlations. Machine learning offers a way to automate the process of building these truth-to-reconstructed object transformations and can capture complex correlation for any given set of input variables. Such machine learning algorithms, with sufficient optimization, could have a wide range of applications: improving phenomenological studies by using a better detector representation, allowing for more efficient production of Geant4 simulation by only simulating events within an interesting part of phase space, and studies on future experimental sensitivity to new physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源