论文标题
Lyapunov功能在Riemannian歧管上的内在结构
Intrinsic Construction of Lyapunov Functions on Riemannian Manifold
论文作者
论文摘要
对于在riemannian歧管上演变的系统,我们提出了横跨lyapunov定理的渐近稳定性和指数稳定性。所提出的方法的新颖性是不依赖于局部欧几里得坐标,因此在更广泛的领域上,比所考虑的平衡的附近有效。我们还展示了构造如何对鲁棒性分析有用。
For systems evolving on a Riemannian manifold, we propose converse Lyapunov theorems for asymptotic and exponential stability. The novelty of the proposed approach is that is does not rely on local Euclidean coordinate, and is thus valid on a wider domain than the immediate vicinity of the considered equilibrium. We also show how the constructions can be useful for robustness analysis.