论文标题
非负基质分解的二阶平稳性的收敛性:
Convergence to Second-Order Stationarity for Non-negative Matrix Factorization: Provably and Concurrently
论文作者
论文摘要
非阴性矩阵分解(NMF)是一个基本的非凸优化问题,用于机器学习中的许多应用(音乐分析,文档集群,语音源分离等)。尽管接受了广泛的研究,但鲜为人知的是否存在天然算法,可以证明可以融合到局部最低限度。部分原因是因为目标是严重的对称性,其梯度不是Lipschitz。在本文中,我们定义了同时且证明可以避免使用鞍点的乘量重量更新类型动力学(修改精液Lee-Seung算法的修改)(一阶固定点不是二阶订单)。我们的技术通过将标准的NMF公式降低到非负轨道上的标准NMF公式,从而将NMF物镜的几何形状从稳定性和利用NMF物镜的几何形状结合在一起,从而将工具结合在一起。我们方法的一个重要优点是使用并发更新,该更新允许在并行计算环境中实现。
Non-negative matrix factorization (NMF) is a fundamental non-convex optimization problem with numerous applications in Machine Learning (music analysis, document clustering, speech-source separation etc). Despite having received extensive study, it is poorly understood whether or not there exist natural algorithms that can provably converge to a local minimum. Part of the reason is because the objective is heavily symmetric and its gradient is not Lipschitz. In this paper we define a multiplicative weight update type dynamics (modification of the seminal Lee-Seung algorithm) that runs concurrently and provably avoids saddle points (first order stationary points that are not second order). Our techniques combine tools from dynamical systems such as stability and exploit the geometry of the NMF objective by reducing the standard NMF formulation over the non-negative orthant to a new formulation over (a scaled) simplex. An important advantage of our method is the use of concurrent updates, which permits implementations in parallel computing environments.