论文标题

感知和推理的神经网络模型

A neural network model of perception and reasoning

论文作者

Blazek, Paul J., Lin, Milo M.

论文摘要

神经元网络活动的感知和推理如何被鲜为人知。这反映在连接主义人工智能的基本局限性中,该局限性由通过基于梯度的优化训练的深神经网络。尽管在许多任务上都取得了成功,但此类网络仍然无法解释象征性推理和概念概括。在这里,我们表明,一组简单的生物学一致性组织原则将这些功能赋予神经元网络。为了证明,我们在一种基于概念构建而不是优化的新型机器学习算法中实施了这些原理,以设计可解释的神经元活动的深层神经网络。在一系列任务中,包括NP硬性问题,其推理能力赋予了其他认知功能,例如通过自我分析进行审议,容忍对抗性攻击以及从简单的示例中学习可转移的规则,以解决不遇到复杂性的问题。这些网络还自然地显示了当前深层神经网络中固有没有的生物神经系统的属性,包括稀疏性,模块化以及分布式和局部触发模式。由于他们没有在标准学习任务上牺牲性能,紧凑或培训时间,因此这些网络为人工智能提供了一种新的无黑盒子方法。它们同样是一个定量框架,以了解神经元网络认知的出现。

How perception and reasoning arise from neuronal network activity is poorly understood. This is reflected in the fundamental limitations of connectionist artificial intelligence, typified by deep neural networks trained via gradient-based optimization. Despite success on many tasks, such networks remain unexplainable black boxes incapable of symbolic reasoning and concept generalization. Here we show that a simple set of biologically consistent organizing principles confer these capabilities to neuronal networks. To demonstrate, we implement these principles in a novel machine learning algorithm, based on concept construction instead of optimization, to design deep neural networks that reason with explainable neuron activity. On a range of tasks including NP-hard problems, their reasoning capabilities grant additional cognitive functions, like deliberating through self-analysis, tolerating adversarial attacks, and learning transferable rules from simple examples to solve problems of unencountered complexity. The networks also naturally display properties of biological nervous systems inherently absent in current deep neural networks, including sparsity, modularity, and both distributed and localized firing patterns. Because they do not sacrifice performance, compactness, or training time on standard learning tasks, these networks provide a new black-box-free approach to artificial intelligence. They likewise serve as a quantitative framework to understand the emergence of cognition from neuronal networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源