论文标题
随机动力学,大偏差原理和非平衡热力学
Stochastic Dynamics, Large Deviations Principle, and Non-equilibrium Thermodynamics
论文作者
论文摘要
通过检查Markovian动力学的一般$ε$依赖发生器的确定性极限,其中包括连续的fokker-Planck方程和离散化学主方程,作为两种特殊情况,介质随机动力学之间的固有连接,确定性的ODE或PDES,确定性的ORE或PDES,大偏差速率速率速率功能功能型,并且具有量度的效果。我们的结果不仅解决了经典不可逆的热力学中熵功能的起源的持久问题,而且还揭示了通过其较大的偏差速率功能在确定性限制期间自动出现的新兴特征,其时间可转换动力学配备有汉密尔顿功能,并配备了可容纳透镜功能的功能。
By examining the deterministic limit of a general $ε$-dependent generator for Markovian dynamics, which includes the continuous Fokker-Planck equations and discrete chemical master equations as two special cases, the intrinsic connections among mesoscopic stochastic dynamics, deterministic ODEs or PDEs, large deviations rate function, and macroscopic thermodynamic potential are established. Our result not only solves the long-lasting question on the origin of entropy function in classical irreversible thermodynamics, but also reveals an emergent feature that arises automatically during the deterministic limit, through its large deviations rate function, with both time-reversible dynamics equipped with a Hamiltonian function and time-irreversible dynamics equipped with an entropy function.