论文标题
用脉冲光发射源和RF腔的电子显微镜的无损单色
Lossless monochromation for electron microscopy with pulsed photoemission sources and rf cavities
论文作者
论文摘要
当与激光驱动的光发射同步时,谐振射频腔可以对电子梁进行精美的时间能量控制。我们提出了一种无损的单色器设计,该设计利用了每电脉冲制度中的这种良好控制。对于相同的空间和能量分辨率,理论上可实现的最大光束电流是比最新单色的数量级。这种改进是时间域中单色的结果,不受电子源的横向亮度的约束。我们通过分析表明并以数值确认,选择以最大程度地减少能量扩散的腔参数执行了撤消上游光学中色差的明显效果的附加功能。我们认为,我们的设计在超快速和非时光分辨显微镜中具有重要的应用,提供了足够小的光电来源,并且具有足够高的重复率的激光来源。我们的设计在模拟中实现了两个以上的数量级降低,而光束能量扩散到单位数MEV。克服色差施加的最小探针大小极限,我们的设计清除了从单一到数百个keV的主要能量上高电流高分辨率电子束应用的路径。
Resonant radiofrequency cavities enable exquisite time-energy control of electron beams when synchronized with laser driven photoemission. We present a lossless monochromator design that exploits this fine control in the one-electron-per-pulse regime. The theoretically achievable maximum beam current on target is orders of magnitude greater than state-of-the-art monochromators for the same spatial and energy resolution. This improvement is the result of monochromating in the time domain, unconstrained by the transverse brightness of the electron source. We show analytically and confirm numerically that cavity parameters chosen to minimize energy spread perform the additional function of undoing the appreciable effect of chromatic aberration in the upstream optics. We argue that our design has significant applications in both ultra-fast and non-time-resolved microscopy, provided photoelectron sources of sufficiently small size and laser sources of sufficiently high repetition rate. Our design achieves in simulations more than two orders of magnitude reduction in beam energy spread, down to single digit meV. Overcoming the minimum probe-size limit that chromatic aberration imposes, our design clears a path for high-current, high-resolution electron beam applications at primary energies from single to hundreds of keV.