论文标题

在Twitter上进行谣言传播和识别的信息扩散方法

An Information Diffusion Approach to Rumor Propagation and Identification on Twitter

论文作者

Osho, Abiola, Waters, Caden, Amariucai, George

论文摘要

随着在线社交网络作为新闻和信息来源的越来越多,谣言倾向于广泛传播并迅速引起了一个很大的关注,尤其是在用户没有足够的时间进行事实检查之前的灾难情况下,在做出明智的决定对似乎是可信的帖子做出反应的情况下。在这项研究中,我们根据潜在信息和用户互动属性探索微观级别错误信息传播的动态,探索Twitter上谣言的传播模式。我们对特征选择和预测进行监督学习。现实世界中数据集的实验结果使模型的预测准确性约为90 \%,以扩散真实和错误主题。我们的发现证实,谣言级联陷入了更深的态度,而谣言被掩盖为新闻,而引起恐惧的消息将比其他消息更快。我们表明,在预测参数和控制扩散的消息特征中,真实和错误消息传播的模型都有很大差异。最后,我们表明扩散模式是确定推文的信誉的重要指标。

With the increasing use of online social networks as a source of news and information, the propensity for a rumor to disseminate widely and quickly poses a great concern, especially in disaster situations where users do not have enough time to fact-check posts before making the informed decision to react to a post that appears to be credible. In this study, we explore the propagation pattern of rumors on Twitter by exploring the dynamics of microscopic-level misinformation spread, based on the latent message and user interaction attributes. We perform supervised learning for feature selection and prediction. Experimental results with real-world data sets give the models' prediction accuracy at about 90\% for the diffusion of both True and False topics. Our findings confirm that rumor cascades run deeper and that rumor masked as news, and messages that incite fear, will diffuse faster than other messages. We show that the models for True and False message propagation differ significantly, both in the prediction parameters and in the message features that govern the diffusion. Finally, we show that the diffusion pattern is an important metric in identifying the credibility of a tweet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源