论文标题
用项目重新校准3D Convnets
Recalibrating 3D ConvNets with Project & Excite
论文作者
论文摘要
完全卷积的神经网络(F-CNN)实现了计算机视觉和医学成像中分割任务的最新性能。最近,已经引入了称为挤压和激发的计算块,以重新校准F-CNN特征映射通道和空间方面的映射,从而提高分割性能,同时仅最少提高模型的复杂性。到目前为止,SE块的发展集中在2D体系结构上。但是,对于体积医学图像,3D F-CNN是自然的选择。在本文中,我们将现有的2D重新校准方法扩展到3D,并提出了一项通用的压缩过程 - 校准管道,以便于对此类块进行比较。我们进一步介绍了针对3D网络定制的Project&Excite(PE)模块。与现有模块相反,项目\&Excite不会执行全局平均池,但压缩沿张量的不同空间维度的图形分别具有图,以保留更多的空间信息,这些空间信息随后在激发步骤中使用。我们评估了两个具有挑战性的任务,MRI扫描的全脑分割以及CT扫描的全身分割的模块。我们证明,PE模块可以很容易地集成到3D F-CNN中,从而使性能在骰子得分中最高为0.3,并且超过了其他重新校准块的3D扩展,而仅略微增加了模型复杂性。我们的代码可在https://github.com/ai-med/squeeze_and_excitation上公开获得。
Fully Convolutional Neural Networks (F-CNNs) achieve state-of-the-art performance for segmentation tasks in computer vision and medical imaging. Recently, computational blocks termed squeeze and excitation (SE) have been introduced to recalibrate F-CNN feature maps both channel- and spatial-wise, boosting segmentation performance while only minimally increasing the model complexity. So far, the development of SE blocks has focused on 2D architectures. For volumetric medical images, however, 3D F-CNNs are a natural choice. In this article, we extend existing 2D recalibration methods to 3D and propose a generic compress-process-recalibrate pipeline for easy comparison of such blocks. We further introduce Project & Excite (PE) modules, customized for 3D networks. In contrast to existing modules, Project \& Excite does not perform global average pooling but compresses feature maps along different spatial dimensions of the tensor separately to retain more spatial information that is subsequently used in the excitation step. We evaluate the modules on two challenging tasks, whole-brain segmentation of MRI scans and whole-body segmentation of CT scans. We demonstrate that PE modules can be easily integrated into 3D F-CNNs, boosting performance up to 0.3 in Dice Score and outperforming 3D extensions of other recalibration blocks, while only marginally increasing the model complexity. Our code is publicly available on https://github.com/ai-med/squeeze_and_excitation .