论文标题

ELPA2分布的eigensolver的GPU加速器,用于密集的对称和遗传学本本特征

GPU-Acceleration of the ELPA2 Distributed Eigensolver for Dense Symmetric and Hermitian Eigenproblems

论文作者

Yu, Victor Wen-zhe, Moussa, Jonathan, Kůs, Pavel, Marek, Andreas, Messmer, Peter, Yoon, Mina, Lederer, Hermann, Blum, Volker

论文摘要

本本征函数的解决方案通常是限制数值算法的可拖动系统大小的关键计算瓶颈,其中包括化学和冷凝物质物理学中的电子结构理论。大型本本特征很容易超过单个计算节点的容量,因此必须在分布式记忆并行计算机上求解。我们在这里介绍了ELPA两阶段三agonalization eigensolver(ELPA2)的面向GPU的优化。除了基于Cublas的GPU卸载外,我们还添加了一个CUDA内核,以加快特征向量的背面转换,这可能是两阶段三级分子化算法的计算最昂贵的部分。我们在两个混合CPU-GPU架构上基于此GPU加速本质量的性能,即基于Intel Xeon Gold CPU和NVIDIA VOLTA GPU的计算集群,以及基于IBM Power9 CPUS和NVIDIA VOLTA VOLTA GPUS的Summit SuperCupture。与以前仅在CPU架构上的基准测试一致,GPU加速的两阶段求解器表现出比单阶段的平行性能。最后,我们证明了在这项工作中开发的GPU加速特征索的性能,用于常规的半本地KS-DFT计算,其中包含数千个原子。

The solution of eigenproblems is often a key computational bottleneck that limits the tractable system size of numerical algorithms, among them electronic structure theory in chemistry and in condensed matter physics. Large eigenproblems can easily exceed the capacity of a single compute node, thus must be solved on distributed-memory parallel computers. We here present GPU-oriented optimizations of the ELPA two-stage tridiagonalization eigensolver (ELPA2). On top of cuBLAS-based GPU offloading, we add a CUDA kernel to speed up the back-transformation of eigenvectors, which can be the computationally most expensive part of the two-stage tridiagonalization algorithm. We benchmark the performance of this GPU-accelerated eigensolver on two hybrid CPU-GPU architectures, namely a compute cluster based on Intel Xeon Gold CPUs and NVIDIA Volta GPUs, and the Summit supercomputer based on IBM POWER9 CPUs and NVIDIA Volta GPUs. Consistent with previous benchmarks on CPU-only architectures, the GPU-accelerated two-stage solver exhibits a parallel performance superior to the one-stage counterpart. Finally, we demonstrate the performance of the GPU-accelerated eigensolver developed in this work for routine semi-local KS-DFT calculations comprising thousands of atoms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源