论文标题
更新和新的结果在模型中降低了
Updates and New Results in Models with Reduced Couplings
论文作者
论文摘要
减少耦合的想法在于寻找符合所有扰动理论阶的可重新分解理论的参数之间的重新归一化群体不变关系。基于减少耦合的原则,可以构建有限的统一理论(FUTS),该理论(FUTS)为$ n = 1 $ supersympersymmetricric的大统一理论,可以成为全订单有限的。在其实验发现之前,对顶级夸克质量的预测和对$ \ sim 121-126 $ GEV在范围内的Light Higgs Boson质量的预测早于其实验性发现早得多,这是此类模型的著名成功。在这里简要审查了耦合方法的减少以及超对称理论中产生的有限性的属性之后,我们分析了四个现象学上偏爱的模型:$ n = 1 $ $ $ su(5)$的最小版本,有限$ n = 1 $ n = 1 $ su(5)$(5)$,a $ n = 1 $ n = $ su(3)$ su(3)$ su(3)$ su(3)$ su(3)3岁(3)3岁(3)(3)最小超对称标准模型(MSSM)的简化版本。现象学评估中的相关更新是改进的光higgs-boson质量预测,该预测由$ \ texttt {feynhiggs} $提供。所有四个模型都可以预测相对较重的超对称光谱,该光谱始于TEV量表或高于TEV量表,与非观察LHC结果一致。根据模型,可以在CLIC上访问光谱的较浅区域,而FCC-HH将能够测试每个模型的预测光谱的大部分。最轻的超对称粒子(LSP)是中inino,被认为是冷暗物质候选者,并使用最新的$ \ texttt {micromegas} $代码进行测试。
The idea of reduction of couplings consists in searching for renormalization group invariant relations between parameters of a renormalizable theory that hold to all orders of perturbation theory. Based on the principle of the reduction of couplings, one can construct Finite Unified Theories (FUTs) which are $N=1$ supersymmetric Grand Unified Theories that can be made all-order finite. The prediction of the top quark mass well in advance of its experimental discovery and the prediction of the light Higgs boson mass in the range $\sim 121-126$ GeV much earlier than its experimental discovery are among the celebrated successes of such models. Here, after a brief review of the reduction of couplings method and the properties of the resulting finiteness in supersymmetric theories, we analyse four phenomenologically favoured models: a minimal version of the $N=1$ $SU(5)$, a finite $N=1$ $SU(5)$, a $N=1$ finite $SU(3)\otimes SU(3)\otimes SU(3)$ model and a reduced version of the Minimal Supersymmetric Standard Model (MSSM). A relevant update in the phenomenological evaluation has been the improved light Higgs-boson mass prediction as provided by the latest version of $\texttt{FeynHiggs}$. All four models predict relatively heavy supersymmetric spectra that start just below or above the TeV scale, consistent with the non-observation LHC results. Depending on the model, the lighter regions of the spectra could be accessible at CLIC, while the FCC-hh will be able to test large parts of predicted spectrum of each model. The lightest supersymmetric particle (LSP), which is a neutralino, is considered as a cold dark matter candidate and put to test using the latest $\texttt{MicrOMEGAs}$ code.