论文标题

对抗雷达推断。从反向跟踪到认知雷达的逆增强学习

Adversarial Radar Inference. From Inverse Tracking to Inverse Reinforcement Learning of Cognitive Radar

论文作者

Krishnamurthy, Vikram

论文摘要

认知传感是指可重构传感器,该传感器通过使用随机控制来优化其传感资源,通过动态调整其感应机制。例如,认知雷达是复杂的动力学系统。他们使用随机控制来感知环境,从有关目标和背景的相关信息中学习,然后调整雷达传感器以满足其任务的需求。在过去的二十年中,在认知/适应性雷达方面见证了深入的研究。本文讨论了下一个逻辑步骤,即反向认知感应。通过观察传感器的排放(例如雷达或一般是受控的随机动力学系统),我们如何检测传感器是否是认知(理性效用最大化器)?如何预测其未来的动作?科学挑战涉及扩展贝叶斯过滤,逆增强学习和动态系统的随机优化到数据驱动的对抗环境。我们的方法超越了经典的统计信号处理(传感和估计/检测理论),以解决如何从传感中推断策略的更深层次的问题。生成模型,对抗性推理算法和相关的数学分析将导致理解复杂的自适应传感器(例如认知雷达)如何运行的进步。

Cognitive sensing refers to a reconfigurable sensor that dynamically adapts its sensing mechanism by using stochastic control to optimize its sensing resources. For example, cognitive radars are sophisticated dynamical systems; they use stochastic control to sense the environment, learn from it relevant information about the target and background, then adapt the radar sensor to satisfy the needs of their mission. The last two decades have witnessed intense research in cognitive/adaptive radars.This paper discusses addresses the next logical step, namely inverse cognitive sensing. By observing the emissions of a sensor (e.g. radar or in general a controlled stochastic dynamical system) in real time, how can we detect if the sensor is cognitive (rational utility maximizer) and how can we predict its future actions? The scientific challenges involve extending Bayesian filtering, inverse reinforcement learning and stochastic optimization of dynamical systems to a data-driven adversarial setting. Our methodology transcends classical statistical signal processing (sensing and estimation/detection theory) to address the deeper issue of how to infer strategy from sensing. The generative models, adversarial inference algorithms and associated mathematical analysis will lead to advances in understanding how sophisticated adaptive sensors such as cognitive radars operate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源