论文标题

关于使用光谱离散与时间稳定的稳定性保留属性伪促销问题的属性

On the use of spectral discretizations with time strong stability preserving properties to Dirichlet pseudo-parabolic problems

论文作者

Abreu, Eduardo, Durán, Angel

论文摘要

本文涉及伪边界条件的伪核方程的线性和非线性 - 边界值问题的近似值。它们通过基于Legendre和Chebyshev多项式的光谱Galerkin和搭配方法在空间中离散。时间整合适当地使用强大的方案来进行定性特征,例如刚度和保持强稳定性,以更正确地模拟非规范问题。描述了相应的半分化和完全离散的方案,并通过计算分析该方法的性能。

This paper is concerned with the approximation of linear and nonlinearinitial-boundary-value problems of pseudo-parabolic equations with Dirichlet boundary conditions. They are discretized in space by spectral Galerkin and collocation methods based on Legendre and Chebyshev polynomials. The time integration is carried out suitably with robust schemes attending to qualitative features such as stiffness and preservation of strong stability to simulate nonregular problems more correctly. The corresponding semidiscrete and fully discrete schemes are described and the performance of the methods is analyzed computationally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源