论文标题

三重膜问题中的自由边界规律性

Free boundary regularity in the triple membrane problem

论文作者

Savin, Ovidiu, Yu, Hui

论文摘要

我们研究了3个弹性膜问题中自由边界的规律性。 我们表明,对应于连续膜之间巧合区域的两个自由边界为$ c^{1,\ log} $ - 在常规交叉点附近的Hypersurfaces。我们还研究了两种类型的奇异交集。 $ c^{1,α} $ - hypersurface本地覆盖的第一种单数点。第二种类型的单数点分层和每个层面都被$ C^1 $ -Manifold局部覆盖。

We investigate the regularity of the free boundaries in the 3 elastic membranes problem. We show that the two free boundaries corresponding to the coincidence regions between consecutive membranes are $C^{1,\log}$-hypersurfaces near a regular intersection point. We also study two types of singular intersections. The first type of singular points are locally covered by a $C^{1,α}$-hypersurface. The second type of singular points stratify and each stratum is locally covered by a $C^1$-manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源