论文标题

使用地震心动图信号的M-Health平台的呼吸器检测器的设计

Design of Breathing-states Detector for m-Health Platform using Seismocardiographic Signal

论文作者

Choudhary, Tilendra, Sharma, L. N., Bhuyan, M. K., Bora, Kangkana

论文摘要

在这项工作中,提出了基于地震心动图(SCG)的呼吸状态测量方法用于M健康应用。提出的框架的目的是通过识别呼吸程度,例如呼吸困难,正常呼吸以及长时间且呼吸的时间来评估人类呼吸系统。为此,需要测量心脏诱导的胸壁振动,反映在SCG信号中。正交子空间投影用于借助于同时的ECG信号提取SCG周期。随后,从每个SCG周期中提取了15种具有统计学意义的形态功能。这些特征可以有效地表征由于呼吸频率变化而导致的生理变化。基于堆叠的自动编码器(SAE)架构用于识别不同的呼吸道体水平。评估了所提出的方法的性能,并将其与其他标准分类器进行比较,以分析了1147个经过分析的SCG-beat。所提出的方法在识别三种不同的呼吸状态时,总体平均准确性为91.45%。对性能结果的定量分析清楚地表明了所提出的框架的有效性。它可以用于各种医疗保健应用中,例如筛查前医疗传感器和基于IoT的远程健康监控系统。

In this work, a seismocardiogram (SCG) based breathing-state measuring method is proposed for m-health applications. The aim of the proposed framework is to assess the human respiratory system by identifying degree-of-breathings, such as breathlessness, normal breathing, and long and labored breathing. For this, it is needed to measure cardiac-induced chest-wall vibrations, reflected in the SCG signal. Orthogonal subspace projection is employed to extract the SCG cycles with the help of a concurrent ECG signal. Subsequently, fifteen statistically significant morphological-features are extracted from each of the SCG cycles. These features can efficiently characterize physiological changes due to varying respiratory rates. Stacked autoencoder (SAE) based architecture is employed for the identification of different respiratory-effort levels. The performance of the proposed method is evaluated and compared with other standard classifiers for 1147 analyzed SCG-beats. The proposed method gives an overall average accuracy of 91.45% in recognizing three different breathing states. The quantitative analysis of the performance results clearly shows the effectiveness of the proposed framework. It may be employed in various healthcare applications, such as pre-screening medical sensors and IoT based remote health-monitoring systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源