论文标题

自动语音识别的深神经网络声学模型的分布式培训

Distributed Training of Deep Neural Network Acoustic Models for Automatic Speech Recognition

论文作者

Cui, Xiaodong, Zhang, Wei, Finkler, Ulrich, Saon, George, Picheny, Michael, Kung, David

论文摘要

由于深度学习的进步,过去十年的自动语音识别(ASR)取得了巨大进展。性能的改进可以归因于改进的模型和大规模培训数据。培训此类模型的关键是利用有效的分布式学习技术。在本文中,我们为ASR的深神经网络声学模型提供了分布式培训技术的概述。从数据平行随机梯度下降(SGD)和ASR声学建模的基本原理开始,我们将研究各种分布式培训策略及其在高性能计算(HPC)环境中的实现,重点是在通信和计算之间达到平衡。实验是在流行的公共基准上进行的,以研究研究策略的融合,加速和认可性能。

The past decade has witnessed great progress in Automatic Speech Recognition (ASR) due to advances in deep learning. The improvements in performance can be attributed to both improved models and large-scale training data. Key to training such models is the employment of efficient distributed learning techniques. In this article, we provide an overview of distributed training techniques for deep neural network acoustic models for ASR. Starting with the fundamentals of data parallel stochastic gradient descent (SGD) and ASR acoustic modeling, we will investigate various distributed training strategies and their realizations in high performance computing (HPC) environments with an emphasis on striking the balance between communication and computation. Experiments are carried out on a popular public benchmark to study the convergence, speedup and recognition performance of the investigated strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源