论文标题

具有不存在属性的聚类和分类:基于句子的差异技术

Clustering and Classification with Non-Existence Attributes: A Sentenced Discrepancy Measure Based Technique

论文作者

Joarder, Y. A., Hossain, Emran, Mahmud, Al Faisal

论文摘要

对于某些或全部数据实例,由于丢失或没有属性,许多独立世界的聚类问题遭受了不完整的数据表征。除非通过插补或边缘化等技术进行预处理,否则典型的聚类方法不能直接应用于此类数据。我们通过利用句子差异度量来克服这一缺点,该措施我们称之为属性基于加权惩罚的差异(AWPD)。使用AWPD度量,我们修改了K-Means ++和可伸缩的K-Means ++用于聚类算法和K最近的邻居(KNN)进行分类,以使它们直接适用于具有不存在属性的数据集。我们已经提出了一项详细的理论分析,该分析表明,新的基于AWPD的K-均值++,可扩展的K-MEANS ++和KNN算法合并为迭代次数中的局部质量是有限的。我们已经在众多基准数据集上进行了深入的实验,以针对各种形式的不存在,表明预计的聚类和分类技术通常与某些通常用于处理此类数据不足的著名插补方法相比,通常会显示出更好的结果。该技术旨在将宝贵的数据追踪到:直接将我们的方法应用于具有不存在的属性的数据集,并建立一种以最佳准确率和最低成本来检测非结构性不存在属性的方法。

For some or all of the data instances a number of independent-world clustering issues suffer from incomplete data characterization due to losing or absent attributes. Typical clustering approaches cannot be applied directly to such data unless pre-processing by techniques like imputation or marginalization. We have overcome this drawback by utilizing a Sentenced Discrepancy Measure which we refer to as the Attribute Weighted Penalty based Discrepancy (AWPD). Using the AWPD measure, we modified the K-MEANS++ and Scalable K-MEANS++ for clustering algorithm and k Nearest Neighbor (kNN) for classification so as to make them directly applicable to datasets with non-existence attributes. We have presented a detailed theoretical analysis which shows that the new AWPD based K-MEANS++, Scalable K-MEANS++ and kNN algorithm merge into a local prime among the number of iterations is finite. We have reported in depth experiments on numerous benchmark datasets for various forms of Non-Existence showing that the projected clustering and classification techniques usually show better results in comparison to some of the renowned imputation methods that are generally used to process such insufficient data. This technique is designed to trace invaluable data to: directly apply our method on the datasets which have Non-Existence attributes and establish a method for detecting unstructured Non-Existence attributes with the best accuracy rate and minimum cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源