论文标题

SU(N)和复杂的Stiefel歧管上不变的爱因斯坦指标

Invariant Einstein metrics on SU(N) and complex Stiefel manifolds

论文作者

Arvanitoyeorgos, Andreas, Sakane, Yusuke, Statha, Marina

论文摘要

我们研究了复杂的Stiefel歧管上不变的爱因斯坦指标的存在$ g/k = \ su(\ ell+m+n)/\ su(n)$和特殊的统一组$ g = \ su(\ ell+m+m+n)$。我们通过使用通用的旗帜歧管$ g/h = \ su(\ ell+m+m+n)/\ s(\ ell)\ el(\ ell)\ el times \ times \ u(m)\ u(m)\ u(u(m)\ u(times \ u(n times \ u(n time times \ u(n time times \ u(n time times \ u(n time times \ u(n time times \ u(n time times \ u(n time times \ u(n times times)), We parametrize scalar products on the 2-dimensional center of the Lie algebra of $H$, and we consider $G$-invariant and left invariant metrics determined by $\Ad(\s(\U(\ell)\times\U(m)\times\U(n))$-invariant scalar products on $\frak g$ and $\frak p$ respectively. Then we compute their此类指标的Ricci张量。 我们证明存在$ \ ad(\ s(\ u(1)\ times \ u(2)\ times \ times \ u(2))$ - 不变的爱因斯坦度量$ \ ad(\ s(\ u(2)\ times \ times \ u(2)\ times \ times \ u(2))$ - $ v_4 \ bb {c}^{6} = \ su(6)/\ su(6)/\ su(2)$不变的Einstein Metrics $ \ ad(\ s(\ u(m)\ times \ u(m)\ times \ times \ u(n))$ - $ v_ {2m} \ bb {c}^{c}^{2m+n} = \ su(2m+n)/\ su(n)/\ su(n)$的不变性的einstein指标。 $ \ ad(\ s(\ u(1)\ times \ u(2)\ u(times \ times \ u(2))$ - 不变的爱因斯坦套在紧凑型谎言组$ \ su(5)$上,这不是自然要还原。紧凑型谎言组$ \ su(4+n)$承认两个自然减少的$ \ ad(\ s(\ u(2)\ times \ times \ u(2)\ u(2)\ times \ u(n))$ - 不变的爱因斯坦度量关于$ \ su(4+n)$($ n \ geq 2 $)的非自然还原爱因斯坦指标的莫里。

We study existence of invariant Einstein metrics on complex Stiefel manifolds $G/K = \SU(\ell+m+n)/\SU(n) $ and the special unitary groups $G = \SU(\ell+m+n)$. We decompose the Lie algebra $\frak g$ of $G$ and the tangent space $\frak p$ of $G/K$, by using the generalized flag manifolds $G/H = \SU(\ell+m+n)/\s(\U(\ell)\times\U(m)\times\U(n))$. We parametrize scalar products on the 2-dimensional center of the Lie algebra of $H$, and we consider $G$-invariant and left invariant metrics determined by $\Ad(\s(\U(\ell)\times\U(m)\times\U(n))$-invariant scalar products on $\frak g$ and $\frak p$ respectively. Then we compute their Ricci tensor for such metrics. We prove existence of $\Ad(\s(\U(1)\times\U(2)\times\U(2))$-invariant Einstein metrics on $V_3\bb{C}^{5}=\SU(5)/\SU(2)$, $\Ad(\s(\U(2)\times\U(2)\times\U(2))$-invariant Einstein metrics on $V_4\bb{C}^{6}=\SU(6)/\SU(2)$, and $\Ad(\s(\U(m)\times\U(m)\times\U(n))$-invariant Einstein metrics on $V_{2m}\bb{C}^{2m+n}=\SU(2m+n)/\SU(n)$. We also prove existence of $\Ad(\s(\U(1)\times\U(2)\times\U(2))$-invariant Einstein metrics on the compact Lie group $\SU(5)$, which are not naturally reductive. The Lie group $\SU(5)$ is the special unitary group of smallest rank known for the moment, admitting non naturally reductive Einstein metrics. Finally, we show that the compact Lie group $\SU(4+n)$ admits two non naturally reductive $\Ad(\s(\U(2)\times\U(2)\times\U(n)))$-invariant Einstein metrics for $ 2 \leq n \leq 25$, and four non naturally reductive Einstein metrics for $n\ge 26$. This extends previous results of K.~ Mori about non naturally reductive Einstein metrics on $\SU(4+n)$ ($n \geq 2$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源