论文标题

在符号和正交抛物线式希格斯束的模量上进行的Hitchin振动

Hitchin fibration on moduli of symplectic and orthogonal parabolic Higgs bundles

论文作者

Roy, Sumit

论文摘要

令$ x $为紧凑型Riemann属属$ g \ geq 2 $,让$ d \ subset x $为固定有限子集。令$ \ MATHCAL {M}(R,D,α)$表示稳定的抛物线$ G $捆绑包(其中$ g $是$ r $的复杂正交或符号组),度$ r $的复杂正交或符号组),$ D $ $ d $和$ x $的权重$α$。希钦发现,代数曲线上稳定束的模量空间的cotangent束是一个代数完全可以整合的系统,该系统在不变多项式的空间上,既由雅各布式的多项式,也可以由jacobian或prym prim verther频谱曲线进行。在本文中,我们研究了$ \ Mathcal {m}(r,d,α)$的希钦纤维。

Let $X$ be a compact Riemann surface of genus $g \geq 2$, and let $D \subset X$ be a fixed finite subset. Let $\mathcal{M}(r,d,α)$ denote the moduli space of stable parabolic $G$-bundles (where $G$ is a complex orthogonal or symplectic group) of rank $r$, degree $d$ and weight type $α$ over $X$. Hitchin discovered that the cotangent bundle of the moduli space of stable bundles on an algebraic curve is an algebraically completely integrable system fibered, over a space of invariant polynomials, either by a Jacobian or a Prym variety of spectral curves. In this paper we study the Hitchin fibers for $\mathcal{M}(r,d,α)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源