论文标题

超线性klein-gordon-Maxwell方程的多个解决方案

Multiple solutions for superlinear Klein-Gordon-Maxwell equations

论文作者

Wu, Dong-Lun, Lin, Hongxia

论文摘要

在本文中,我们考虑以下klein-gordon-maxwell方程\ begin {eqnarray*} \ left \ {\ oken {array} {ll} {ll}-ΔU+v(x) -uΔdation+ ϕu^2 =-ΩU^2&\ mbox {in $ \ Mathbb {r}^{3} $},\ end {array} \ right。 \ end {eqnarray*}其中$ω> 0 $是常数,$ u $,$ ϕ:\ MATHBB {r}^{3} {3} \ rightarrow \ Mathbb {r} $,$ v:\ Mathbb {r}通过假设$ v $的强制性条件以及$ f $上的一些新的超级线性条件,当$ h $不是零时,当$ f $在$ u $中是奇数和上述方程式中的$ h \ equiv0 $时,我们将获得两种非平凡解决方案。

In this paper, we consider the following Klein-Gordon-Maxwell equations \begin{eqnarray*} \left\{ \begin{array}{ll} -Δu+ V(x)u-(2ω+ϕ)ϕu=f(x,u)+h(x)&\mbox{in $\mathbb{R}^{3}$},\\ -Δϕ+ ϕu^2=-ωu^2&\mbox{in $\mathbb{R}^{3}$}, \end{array} \right. \end{eqnarray*} where $ω>0$ is a constant, $u$, $ϕ: \mathbb{R}^{3}\rightarrow \mathbb{R}$, $V : \mathbb{R}^{3} \rightarrow\mathbb{R}$ is a potential function. By assuming the coercive condition on $V$ and some new superlinear conditions on $f$, we obtain two nontrivial solutions when $h$ is nonzero and infinitely many solutions when $f$ is odd in $u$ and $h\equiv0$ for above equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源