论文标题
对绿色边缘AI推断的稀疏优化
Sparse Optimization for Green Edge AI Inference
论文作者
论文摘要
随着网络边缘的深度学习任务的快速增长,有效的边缘人工智能(AI)推论对于通过利用边缘计算能力为移动用户提供低层智能服务至关重要。在这种情况下,能源效率成为主要问题。在本文中,我们提出了一个联合推理任务选择和下行链接仪的策略,以最大程度地减少包括计算和传输功耗的整体功耗,从而实现节能边缘AI推断,从而产生混合组合的优化问题。通过利用任务选择集与群稀疏结构发射光束成形向量之间的固有连接,我们将优化重新化为组稀疏波束成形问题。为了解决这个具有挑战性的问题,我们提出了基于对数和函数的三阶段方法。通过采用对数和函数来增强组的稀疏性,可以开发出近端重新加权的算法。此外,我们建立了全局收敛分析,并为该算法提供了厄运最坏情况的收敛速率。仿真结果将证明提出的方法提高边缘AI推理系统中能源效率的有效性。
With the rapid upsurge of deep learning tasks at the network edge, effective edge artificial intelligence (AI) inference becomes critical to provide low-latency intelligent services for mobile users via leveraging the edge computing capability. In such scenarios, energy efficiency becomes a primary concern. In this paper, we present a joint inference task selection and downlink beamforming strategy to achieve energy-efficient edge AI inference through minimizing the overall power consumption consisting of both computation and transmission power consumption, yielding a mixed combinatorial optimization problem. By exploiting the inherent connections between the set of task selection and group sparsity structural transmit beamforming vector, we reformulate the optimization as a group sparse beamforming problem. To solve this challenging problem, we propose a log-sum function based three-stage approach. By adopting the log-sum function to enhance the group sparsity, a proximal iteratively reweighted algorithm is developed. Furthermore, we establish the global convergence analysis and provide the ergodic worst-case convergence rate for this algorithm. Simulation results will demonstrate the effectiveness of the proposed approach for improving energy efficiency in edge AI inference systems.