论文标题

通过输出反馈来为一组非独立ugvs的合作自适应学习控制

Cooperative Adaptive Learning Control for A Group of Nonholonomic UGVs by Output Feedback

论文作者

Dong, Xiaonan, Stegagno, Paolo, Yuan, Chengzhi, Zeng, Wei

论文摘要

本章提出了一组相同的独轮车型无人接地车辆(UGV),提出了基于高增强观察者的合作确定性学习(CDL)控制算法,以跟踪所需的参考轨迹。对于车辆状态,可以测量车辆的位置,而使用高增益观察者估算速度。对于轨迹跟踪控制器,径向基函数(RBF)神经网络(NN)用于在线估计车辆的未知动力学,并且CDL保证了NN重量收敛和估计精度。本章的主要挑战和新颖性是使用基于观察者的CDL算法跟踪参考轨迹,而无需全部了解车辆状态和车辆模型。此外,系统中的任何车辆都可以学习所有车辆试剂经历的轨迹结合的未建模动力学知识,从而可以重新使用学习的知识以遵循学习阶段中定义的任何参考轨迹。使用Lyapunov方法显示了基于学习的跟踪收敛和共识学习结果,并将学习知识用于跟踪经验丰富的轨迹。进行仿真以显示该算法的有效性。

A high-gain observer-based cooperative deterministic learning (CDL) control algorithm is proposed in this chapter for a group of identical unicycle-type unmanned ground vehicles (UGVs) to track over desired reference trajectories. For the vehicle states, the positions of the vehicles can be measured, while the velocities are estimated using the high-gain observer. For the trajectory tracking controller, the radial basis function (RBF) neural network (NN) is used to online estimate the unknown dynamics of the vehicle, and the NN weight convergence and estimation accuracy is guaranteed by CDL. The major challenge and novelty of this chapter is to track the reference trajectory using this observer-based CDL algorithm without the full knowledge of the vehicle state and vehicle model. In addition, any vehicle in the system is able to learn the knowledge of unmodeled dynamics along the union of trajectories experienced by all vehicle agents, such that the learned knowledge can be re-used to follow any reference trajectory defined in the learning phase. The learning-based tracking convergence and consensus learning results, as well as using learned knowledge for tracking experienced trajectories, are shown using the Lyapunov method. Simulation is given to show the effectiveness of this algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源