论文标题

使用具有多塔A分析的深神经网络预测基线认知能力下降的速度

Predicting Rate of Cognitive Decline at Baseline Using a Deep Neural Network with Multidata Analysis

论文作者

Candemir, Sema, Nguyen, Xuan V., Prevedello, Luciano M., Bigelow, Matthew T., White, Richard D., Erdal, Barbaros S.

论文摘要

目的:这项研究调查了基于机器学习的系统是否可以通过仅处理初次访问时收集的临床和成像数据来预测轻度认知受损患者的认知下降率。 方法:我们利用3维卷积神经网络基于有监督的混合神经网络建立了预测模型,对磁共振成像进行体积分析,并在建筑层完全连接的层上进行非成像临床数据的整合。实验是对阿尔茨海默氏病神经影像倡议数据集进行的。 结果:实验结果证实,认知能力下降与第一次访问中获得的数据之间存在相关性。该系统在认知下降类别的预测下实现了接收器操作员曲线(AUC)0.70的区域。 结论:据我们所知,这是第一项研究,该研究通过处理常规收集的基线临床和人口统计数据(基线MRI,基线MMSE,标量数据,年龄,年龄,性别,性别,教育,族裔和种族)来预测缓慢恶化/稳定或快速恶化的类别。培训数据是基于MMSE速率值构建的。与文献中的研究不同,该研究专注于预测对alzheimer的疾病转化和疾病分类的轻度认知障碍,我们将问题作为MCI患者认知率下降率的早期预测。

Purpose: This study investigates whether a machine-learning-based system can predict the rate of cognitive decline in mildly cognitively impaired patients by processing only the clinical and imaging data collected at the initial visit. Approach: We built a predictive model based on a supervised hybrid neural network utilizing a 3-Dimensional Convolutional Neural Network to perform volume analysis of Magnetic Resonance Imaging and integration of non-imaging clinical data at the fully connected layer of the architecture. The experiments are conducted on the Alzheimers Disease Neuroimaging Initiative dataset. Results: Experimental results confirm that there is a correlation between cognitive decline and the data obtained at the first visit. The system achieved an area under the receiver operator curve (AUC) of 0.70 for cognitive decline class prediction. Conclusion: To our knowledge, this is the first study that predicts slowly deteriorating/stable or rapidly deteriorating classes by processing routinely collected baseline clinical and demographic data (Baseline MRI, Baseline MMSE, Scalar Volumetric data, Age, Gender, Education, Ethnicity, and Race). The training data is built based on MMSE-rate values. Unlike the studies in the literature that focus on predicting Mild Cognitive Impairment-to-Alzheimer`s disease conversion and disease classification, we approach the problem as an early prediction of cognitive decline rate in MCI patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源