论文标题

Caffarelli-Kohn-Nirenberg重量的快速扩散方程的解决方案的良好特性

Fine properties of solutions to the Cauchy problem for a Fast Diffusion Equation with Caffarelli-Kohn-Nirenberg weights

论文作者

Bonforte, Matteo, Simonov, Nikita

论文摘要

我们研究了与权重的快速扩散方程($ u_t = | u_t = | x | x |^γ\ mathrm {div} \ left(| x | x |^{ - β{ - β} \ nabla u^m \ right)$(0,+infty pos),在$ d \ ge 3 $中,在所谓的良好快速扩散范围内,$ m_c <m <1 $,在参数$γ,β$的范围内,最适合所谓的Caffarelli-Kohn-Nirenberg不平等现象的有效性。询问这种解决方案的表现是一个自然的问题,就像barenblatt $ \ mathfrak {b} $(基本解决方案):例如,渐近融合,即$ \ | u(t) - \ mathfrak {b} {b}(t)(t)(t) l}^p(\ mathbb {r}^d)} \ xrightArrow [] {t \ to \ infty} 0 $,以所有$ 1 \ le p \ le \ infty $而闻名,而只有少数部分结果可以解决对尾巴行为的细微分析。我们表征了最大的数据集$ \ MATHCAL {X} \ subset {\ rm L}^1 _+(\ Mathbb {r}^d)$,该$产生的解决方案被刻在两个Barenblatt(Global Harnack Princtiple)之间,并在相对错误(UREC)中汇聚(UREC),i.e.e.e. $ { d} _ \ infty(u(t))= \ | u(t)/\ Mathcal {b}(t)-1 \ | _ {{\ rm l}^\ infty(\ mathbb {r}^d)}这种表征是根据$ u(t = 0)$的整体条件而言。据我们所知,线性加热方程的类似问题$ m = 1 $,没有那么明确的答案。我们的特征对于经典,非加权的FDE也是新的。我们能够以不同的规范提供最小的收敛速率。在非加权情况下,这种速率几乎是最佳的,并且对于径向溶液而言是最佳的。为了完成全景,我们表明具有$ {\ rm l}^1 _+(\ mathbb {r}^d)\ setMinus \ Mathcal \ Mathcal {x} $的解决方案,保留所有时间相同的“脂肪”空间尾巴,因此Urec失败了。

We investigate fine global properties of nonnegative, integrable solutions to the Cauchy problem for the Fast Diffusion Equation with weights (WFDE) $u_t=|x|^γ\mathrm{div}\left(|x|^{-β}\nabla u^m\right)$ posed on $(0,+\infty)\times\mathbb{R}^d$, with $d\ge 3$, in the so-called good fast diffusion range $m_c<m<1$, within the range of parameters $γ, β$, optimal for the validity of the so-called Caffarelli-Kohn-Nirenberg inequalities. It is a natural question to ask in which sense such solutions behave like the Barenblatt $\mathfrak{B}$ (fundamental solution): for instance, asymptotic convergence, i.e. $\|u(t)-\mathfrak{B}(t)\|_{{\rm L}^p(\mathbb{R}^d)}\xrightarrow[]{t\to\infty}0$, is well known for all $1\le p\le \infty$, while only few partial results tackle a finer analysis of the tail behaviour. We characterize the maximal set of data $\mathcal{X}\subset{\rm L}^1_+(\mathbb{R}^d)$ that produces solutions which are pointwise trapped between two Barenblatt (Global Harnack Principle), and uniformly converge in relative error (UREC), i.e. ${\rm d}_\infty(u(t))=\|u(t)/\mathcal{B}(t)-1\|_{{\rm L}^\infty(\mathbb{R}^d)}\xrightarrow[]{t\to\infty}0$. Such characterization is in terms of an integral condition on $u(t=0)$. To the best of our knowledge, analogous issues for the linear heat equation $m=1$, do not possess such clear answers. Our characterization is also new for the classical, non-weighted, FDE. We are able to provide minimal rates of convergence to $\mathcal{B}$ in different norms. Such rates are almost optimal in the non weighted case, and become optimal for radial solutions. To complete the panorama, we show that solutions with data in ${\rm L}^1_+(\mathbb{R}^d)\setminus\mathcal{X}$, preserve the same "fat" spatial tail for all times, hence UREC fails.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源