论文标题
两种硬核玻色子在一个维度上的纠缠熵
Entanglement entropy of two-species hard-core bosons in one dimension
论文作者
论文摘要
我们研究了一个维度在一个维度上的两个物种硬核玻色子的模型的von Neumann熵。在此模型中,同种物种玻色子满足硬核条件,而不同物种的玻色子则可以使用局部相互作用u占据同一位置。在半填充时,通过Jordan-Wigner Transformation,该模型精确地映射到费米子哈伯德模型。从超级流体u = 0到莫特绝缘子u> 0的相过渡可以通过简单的一波段理论进行半填充。我们在半填充的情况下测量基态的von Neumann纠缠熵,并远离半填充以了解量子相变。为了实现这一目标,我们使用无限尺寸矩阵产品状态的时间进化模块拆卸方法,还使用密度矩阵恢复型基团与具有较大键尺寸的矩阵产品运营商最多300的矩阵产品运算符。我们发现有力的证据表明,von Noumann纠缠的局部最小点是量子关键点的量子范围内的量子肯定质量质量质量产品。
We study the von Neumann entropy of a model for two-species hard-core bosons in one dimension. In this model, the same-species bosons satisfy hard-core conditions, while the different-species bosons are allowed to occupy the same site with a local interaction U . At half-filling, by Jordan-Wigner transformation, the model is exactly mapped to a fermionic Hubbard model. The phase transition from superfluid U = 0 to Mott insulator U > 0 can be explained by simple one-band theory at half-filling. We measure the von Neumann entanglement entropy of the ground states for the half-filled case and away from half-filling to understand quantum phase transitions. To achieve this goal, we use a time-evolution-block decimation method with infinite-size matrix product state and also use a density matrix renormalization group with matrix product operators with large bond dimensions up to 300. We found strong evidence that the local minimum point of the von Neumann entanglement entropy is the quantum critical point for finite-bond-dimension matrix product states.