论文标题
ROURUSTTAD:通过分解和卷积神经网络检测强大的时间序列异常检测
RobustTAD: Robust Time Series Anomaly Detection via Decomposition and Convolutional Neural Networks
论文作者
论文摘要
阿里巴巴集团众多且多样化的时间序列数据的监视和管理要求有效且可扩展的时间序列异常检测服务。在本文中,我们提出了Robusttad,这是一个强大的时间序列异常检测框架,通过整合稳健的季节性趋势分解和时间序列数据的卷积神经网络。季节性趋势分解可以有效地处理时间序列中的复杂模式,同时显着简化了神经网络的体系结构,神经网络是具有跳过连接的编码器decoder架构。该体系结构可以有效地捕获时间序列中的多尺度信息,这在异常检测中非常有用。由于时间序列异常检测中标记的数据有限,我们系统地研究了时间和频域中的数据增强方法。我们还利用时间序列异常检测问题的不平衡性质,在损耗函数中引入了基于标签的重量和基于价值的重量。与广泛使用的基于预测的异常检测算法,基于分解的算法,传统统计算法以及最近基于神经网络的算法相比,ROURUSTTAD在公共基准数据集中的性能明显更好。它被部署为公共在线服务,并在阿里巴巴集团的不同业务场景中广泛采用。
The monitoring and management of numerous and diverse time series data at Alibaba Group calls for an effective and scalable time series anomaly detection service. In this paper, we propose RobustTAD, a Robust Time series Anomaly Detection framework by integrating robust seasonal-trend decomposition and convolutional neural network for time series data. The seasonal-trend decomposition can effectively handle complicated patterns in time series, and meanwhile significantly simplifies the architecture of the neural network, which is an encoder-decoder architecture with skip connections. This architecture can effectively capture the multi-scale information from time series, which is very useful in anomaly detection. Due to the limited labeled data in time series anomaly detection, we systematically investigate data augmentation methods in both time and frequency domains. We also introduce label-based weight and value-based weight in the loss function by utilizing the unbalanced nature of the time series anomaly detection problem. Compared with the widely used forecasting-based anomaly detection algorithms, decomposition-based algorithms, traditional statistical algorithms, as well as recent neural network based algorithms, RobustTAD performs significantly better on public benchmark datasets. It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.