论文标题

基本代数

Equidecomposition in cardinal algebras

论文作者

Shinko, Forte

论文摘要

令$γ$为一个可数的群体。索里森的经典定理指出,如果$ x $是标准的borel $γ$ - 空间和$μ$和$ν$,则是$ x $的borel概率措施,它们对每个$γ$ -Invariant子集一致,那么$μ$ $ $和$ν$,则是均等的,即borel的$___________。 $ x $这样,$μ= \sum_γμ_γ$和$ν= \sum_γγμ_γ$。我们将此结果概括为基本代数。

Let $Γ$ be a countable group. A classical theorem of Thorisson states that if $X$ is a standard Borel $Γ$-space and $μ$ and $ν$ are Borel probability measures on $X$ which agree on every $Γ$-invariant subset, then $μ$ and $ν$ are equidecomposable, i.e. there are Borel measures $(μ_γ)_{γ\inΓ}$ on $X$ such that $μ= \sum_γμ_γ$ and $ν= \sum_γγμ_γ$. We establish a generalization of this result to cardinal algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源