论文标题

晶体中的广义电子流体动力学,涡旋耦合和霍尔粘度

Generalized Electron Hydrodynamics, Vorticity Coupling, and Hall Viscosity in Crystals

论文作者

Varnavides, Georgios, Jermyn, Adam S., Anikeeva, Polina, Felser, Claudia, Narang, Prineha

论文摘要

理论和实验研究表明,冷凝物质中的电子可以表现出流体动力,表现出流体现象,例如Stokes流动和涡流。与经典的流体不同,晶体内部的首选方向提升了各向同性限制,需要对电子流体动力学进行广义处理。我们探索由两个和三个维度最通用的粘度张量产生的电子流体行为,仅受热力学和晶体对称性的约束。六边形的2D材料(例如石墨烯)支持流与各向同性液的流量无法区分。相比之下,包括Weyl半法在内的3D材料显示出与各向同性的显着偏差。破坏时间反转对称性,例如在磁性拓扑材料中,将非隔离的霍尔组分引入粘度张量。尽管这种各向同性在3D中消失,但各向异性材料可以表现出非零的HALL粘度成分。我们表明,在3D各向异性材料中,电子流体应力可以将涡度与涡度相对,而不会破坏时间反转对称性。我们的工作证明了在石墨烯之外的系统中电子流体力学的异常景观,并提出了实验几何形状以量化电子粘度的影响。

Theoretical and experimental studies have revealed that electrons in condensed matter can behave hydrodynamically, exhibiting fluid phenomena such as Stokes flow and vortices. Unlike classical fluids, preferred directions inside crystals lift isotropic restrictions, necessitating a generalized treatment of electron hydrodynamics. We explore electron fluid behaviors arising from the most general viscosity tensors in two and three dimensions, constrained only by thermodynamics and crystal symmetries. Hexagonal 2D materials such as graphene support flows indistinguishable from those of an isotropic fluid. By contrast 3D materials including Weyl semimetals, exhibit significant deviations from isotropy. Breaking time-reversal symmetry, for example in magnetic topological materials, introduces a non-dissipative Hall component to the viscosity tensor. While this vanishes by isotropy in 3D, anisotropic materials can exhibit nonzero Hall viscosity components. We show that in 3D anisotropic materials the electronic fluid stress can couple to the vorticity without breaking time-reversal symmetry. Our work demonstrates the anomalous landscape for electron hydrodynamics in systems beyond graphene, and presents experimental geometries to quantify the effects of electronic viscosity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源