论文标题

通过公用事业感知的移动代理选择,时空覆盖范围增强

Spatio-Temporal Coverage Enhancement in Drive-By Sensing Through Utility-Aware Mobile Agent Selection

论文作者

Tonekaboni, Navid Hashemi, Ramaswamy, Lakshmish, Mishra, Deepak, Omidvar, Sorush

论文摘要

近年来,开车范式在对城市地区的成本效益监测中变得越来越流行。开车传感是人群的一种形式,其中配备传感器的车辆(又称移动剂)是主要数据收集代理。增强驱动器感应的功效带来了许多挑战,其中一个重要的挑战是选择未使用少量传感器的非指定移动剂。这个问题我们称为移动设备选择问题,对驱动器传感平台和结果数据集的时空覆盖范围有重大影响。这里的挑战是实现最大的时空覆盖范围,同时考虑地理区域的相对重要性水平。在本文中,我们在童子军项目的背景下解决了这个问题,其目的是准确地绘制和分析城市热岛现象。 我们的工作做出了一些主要的技术贡献。首先,我们描述了一个用于表示移动代理选择问题的模型。该模型考虑了车辆的轨迹(我们案例公共交通巴士)和城市地区的相对重要性,并将其作为优化问题提出。其次,我们提供了两种基于移动药物的效用(覆盖范围)值的算法,即一种基于热点的基于热点的算法,将搜索空间限制为重要的子区域和一种效用感知的遗传算法,该算法使后者算法可以无数选择。第三,我们设计了一种高效的覆盖冗余最小化算法,在每个步骤中,它都选择了移动剂,该算法可为时空覆盖范围提供最大的改进。本文报告了来自美国乔治亚州雅典的现实世界数据集的一系列实验,以证明所提出的方法的有效性。

In recent years, the drive-by sensing paradigm has become increasingly popular for cost-effective monitoring of urban areas. Drive-by sensing is a form of crowdsensing wherein sensor-equipped vehicles (aka, mobile agents) are the primary data gathering agents. Enhancing the efficacy of drive-by sensing poses many challenges, an important one of which is to select non-dedicated mobile agents on which a limited number of sensors are to be mounted. This problem, which we refer to as the mobile-agent selection problem, has a significant impact on the spatio-temporal coverage of the drive-by sensing platforms and the resultant datasets. The challenge here is to achieve maximum spatiotemporal coverage while taking the relative importance levels of geographical areas into account. In this paper, we address this problem in the context of the SCOUTS project, the goal of which is to map and analyze the urban heat island phenomenon accurately. Our work makes several major technical contributions. First, we delineate a model for representing the mobile agents selection problem. This model takes into account the trajectories of the vehicles (public transportation buses in our case) and the relative importance of the urban regions, and formulates it as an optimization problem. Second, we provide two algorithms that are based upon the utility (coverage) values of mobile agents, namely, a hotspot-based algorithm that limits the search space to important sub-regions and a utility-aware genetic algorithm that enables the latter algorithm to make unbiased selections. Third, we design a highly efficient coverage redundancy minimization algorithm that, at each step, chooses the mobile agent, which provides maximal improvement to the spatio-temporal coverage. This paper reports a series of experiments on a real-world dataset from Athens, GA, USA, to demonstrate the effectiveness of the proposed approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源