论文标题
广告/CFT的几何方面
Geometrical Aspects of AdS/CFT
论文作者
论文摘要
在本论文中,我们调查了所有扭曲的广告$ _4 $和广告$ _3 $背景,其中最通用的通量可在10二维和11维超级助理中保留超过16个超对称性。假设内部歧管是没有边界的紧凑,或者背景的等轴测代数将其分解为AD和横向空间的等级代数,我们发现IIB SuperGravity中没有ADS $ _4 $背景。同样,我们在IIA Supergravity中找到了具有24个超对称性的独特背景,在本地等距到$ ads_4 \ times \ times \ mathbb {cp}^3 $。在11维超级重力中,所有超过一半的BPS背景被证明是对最大超对称$ ads_4 \ times s^7 $解决方案的局部等距。此外,我们证明了ADS $ _3 $解决方案的不存在定理,可保留超过16个超对称性。最后,我们证明了$ \ mathbb {r}^{n-1,1} \ times_w m^{d-n} $($ n \ geq 3,d = 10,11 $)的扭曲的minkowski空间背景,以11二维的速度和II型超级助手的范围更加平稳,在11二维的超级范围内,这是超过16个超超过16个超超度,这可能是超过16次超级势力,这是在现场,这是一定数期超过16个,这是属于超过16的超级人数Minkowski真空$ \ MATHBB {r}^{d-1,1} $。特别是,这些理论的所有这些通量压实真空都具有与最大超对称真空$ \ mathbb {r}^{n-1,1} \ times t^{d-n} $相同的局部几何形状。
In this thesis, we investigate all warped AdS$_4$ and AdS$_3$ backgrounds with the most general allowed fluxes that preserve more than 16 supersymmetries in 10- and 11-dimensional supergravities. Assuming either that the internal manifold is compact without boundary or that the isometry algebra of the background decomposes into that of AdS and that of the transverse space, we find that there are no AdS$_4$ backgrounds in IIB supergravity. Similarly, we find a unique such background with 24 supersymmetries in IIA supergravity, locally isometric to $AdS_4\times \mathbb{CP}^3$. In 11-dimensional supergravity all more than half BPS AdS backgrounds are shown to be locally isometric to the maximally supersymmetric $AdS_4\times S^7$ solution. Furthermore, we prove a non-existence theorem for AdS$_3$ solutions preserving more than 16 supersymmetries. Finally, we demonstrate that warped Minkowski space backgrounds of the form $\mathbb{R}^{n-1,1}\times_w M^{D-n}$ ($n\geq 3,D=10,11$) in 11-dimensional and type II supergravities preserving strictly more than 16 supersymmetries and with fields, which may not be smooth everywhere, are locally isometric to the Minkowski vacuum $\mathbb{R}^{D-1,1}$. In particular, all such flux compactification vacua of these theories have the same local geometry as the maximally supersymmetric vacuum $\mathbb{R}^{n-1,1}\times T^{d-n}$.