论文标题

基于激光写的波导可靠的相干光学内存

Reliable coherent optical memory based on a laser-written waveguide

论文作者

Liu, Chao, Zhou, Zong-Quan, Zhu, Tian-Xiang, Zheng, Liang, Jin, Ming, Liu, Xiao, Li, Pei-Yun, Huang, Jian-Yin, Ma, Yu, Tu, Tao, Yang, Tian-Shu, Li, Chuan-Feng, Guo, Guang-Can

论文摘要

$ \ mathrm {^{151} eu^{3+}} $ - 掺杂的yttrium硅酸盐($ \ mathrm {^{^{151} eu^{3+}:y_2sio_5} $)是具有具有超固定状态的独特材料,具有具有超细状态,具有与同系连为止均匀的,上限为6 h h 6 h h 6 h h 6 h。许多努力一直致力于基于散装晶体的光学量子记忆的开发,但是可以促进$ \ mathrm {^{^{151} eu^{3+}的可集成结构(例如光学波导):y_2sio_5} $ - 基于实用的量子记忆,尚未被证明。在这里,我们在$ \ mathrm {^{151} eu^{3+}中报告了2型波导的制造:y_2sio_5} $ crystal cystal c crystal cystal cystal cystal。所得的波导与单模纤维兼容,并且插入损失最小为$ 4.95 \ db $。通过使用自旋波原子频率梳(AFC)方案和沉默的Echo(Rose)方案的复兴,在波导中显示了按需的光存储。我们基于这两个方案实现了一系列干涉实验,以表征存储保真度。读取脉冲的干扰可见性为$ 0.99 \ pm 0.03 $,用于自旋波AFC方案和$ 0.97 \ pm 0.02 $的玫瑰方案$ 0.02 $,证明了集成的光学内存的可靠性。

$\mathrm {^{151}Eu^{3+}}$-doped yttrium silicate ($\mathrm {^{151}Eu^{3+}:Y_2SiO_5}$ ) crystal is a unique material that possesses hyperfine states with coherence time up to 6 h. Many efforts have been devoted to the development of this material as optical quantum memories based on the bulk crystals, but integrable structures (such as optical waveguides) that can promote $\mathrm {^{151}Eu^{3+}:Y_2SiO_5}$-based quantum memories to practical applications, have not been demonstrated so far. Here we report the fabrication of type 2 waveguides in a $\mathrm {^{151}Eu^{3+}:Y_2SiO_5}$ crystal using femtosecond-laser micromachining. The resulting waveguides are compatible with single-mode fibers and have the smallest insertion loss of $4.95\ dB$. On-demand light storage is demonstrated in a waveguide by employing the spin-wave atomic frequency comb (AFC) scheme and the revival of silenced echo (ROSE) scheme. We implement a series of interference experiments based on these two schemes to characterize the storage fidelity. Interference visibility of the readout pulse is $0.99\pm 0.03$ for the spin-wave AFC scheme and $0.97\pm 0.02$ for the ROSE scheme, demonstrating the reliability of the integrated optical memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源