论文标题

定向最佳运输

The Directional Optimal Transport

论文作者

Nutz, Marcel, Wang, Ruodu

论文摘要

我们引入了一个约束的最佳运输问题,其中原始$ x $只能将其运输到目的地$ y \ geq x $。我们的统计动机是描述当效果单调或$ y \ geq x $时,给定边缘的治疗效果$ y-x $方差的尖锐上限。因此,我们专注于超模型成本(或子模型奖励),并引入一个耦合$ p _ {*} $,对于所有此类成本而言都是最佳的,并产生了急剧的界限。这种耦合允许多种表征 - 几何形状,订单理论,作为最佳运输,通过CDF以及通过传输内核解释其结构并暗示有用的界限。当第一个边缘是原子无原子时,$ p _ {*} $集中在两个地图的图上,可以用边缘来描述,这是由于结合约束而产生的第二张地图。

We introduce a constrained optimal transport problem where origins $x$ can only be transported to destinations $y\geq x$. Our statistical motivation is to describe the sharp upper bound for the variance of the treatment effect $Y-X$ given marginals when the effect is monotone, or $Y\geq X$. We thus focus on supermodular costs (or submodular rewards) and introduce a coupling $P_{*}$ that is optimal for all such costs and yields the sharp bound. This coupling admits manifold characterizations -- geometric, order-theoretic, as optimal transport, through the cdf, and via the transport kernel -- that explain its structure and imply useful bounds. When the first marginal is atomless, $P_{*}$ is concentrated on the graphs of two maps which can be described in terms of the marginals, the second map arising due to the binding constraint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源