论文标题
边缘温度环振荡通过湍流过渡调制,以维持固定的改善能量限制等离子体
Edge Temperature Ring Oscillation Modulated by Turbulence Transition for Sustaining Stationary Improved Energy Confinement Plasmas
论文作者
论文摘要
最近在实验性的高级超导tokamak中实现了可再现的固定改进的限制模式(i模式),其具有良好的限制,没有颗粒传输屏障,这可能有助于解决由边缘局部模式(ELM)引起的热量通量问题,以及未来融合反应器的氦气灰问题。基于湍流跃迁与边缘温度振荡之间的耦合,维持固定i模式的显微镜机制已首次发现。已经确定了具有方位型对称结构($ n = 0 $,$ m = 0 $)的径向局部局部边缘温度环振荡(ETRO),它是由离子温度梯度模式(ITG)和捕获电子模式(TEM)之间的替代湍流过渡引起的。 ITG-TEM转变由局部电子温度梯度控制,并且与陀螺仪模拟一致。由ETRO,湍流和运输过渡组成的自组织系统在维持I模式限制方面起着关键作用。这些结果为将来访问,维护和控制固定的i模式提供了新的物理基础。
A reproducible stationary improved confinement mode (I-mode) has been achieved recently in the Experimental Advanced Superconducting Tokamak, featuring good confinement without particle transport barrier, which could be beneficial to solving the heat flux problem caused by edge localized modes (ELM) and the helium ash problem for future fusion reactors. The microscopic mechanism of sustaining stationary I-mode, based on the coupling between turbulence transition and the edge temperature oscillation, has been discovered for the first time. A radially localized edge temperature ring oscillation (ETRO) with azimuthally symmetric structure ($n=0$,$m=0$) has been identified and it is caused by alternative turbulence transitions between ion temperature gradient modes (ITG) and trapped electron modes (TEM). The ITG-TEM transition is controlled by local electron temperature gradient and consistent with the gyrokinetic simulations. The self-organizing system consisting with ETRO, turbulence and transport transitions plays the key role in sustaining the I-mode confinement. These results provide a novel physics basis for accessing, maintaining and controlling stationary I-mode in the future.