论文标题

混合单位间隔图及其应用的U-Bubble模型:重新审视最大问题

U-Bubble Model for Mixed Unit Interval Graphs and its Applications: The MaxCut Problem Revisited

论文作者

Kratochvíl, Jan, Masařík, Tomáš, Novotná, Jana

论文摘要

间隔图,实际线上(间隔)上段的交点图,在算法和特殊结构特性的研究中起关键作用。单位间隔图,其适当的子类(每个间隔都有一个单位长度)也已进行了广泛的研究。我们研究混合单位间隔图---每个间隔仍然具有单位长度的单位间隔图的概括,但是允许多种类型(开放,闭合,半闭合)的间隔。这种小的修改捕获了更丰富的图形。特别是,与单位间隔图相比,混合单位间隔图并非无爪。 Heggernes,Meister和Papadopoulos定义了称为气泡模型的单位间隔图的表示,该图在算法设计中很有用。我们将此模型扩展到混合单位间隔图的类别,并通过提供用于在混合单位间隔图上解决maxcut问题的次指数时间算法来证明该广义模型的优势。此外,我们为混合单位间隔图的某些子类得出了多项式时间算法。我们指出,在Boyaci,Ekim和Shalom(2017)的单位间隔图上,MaxCut问题的多项式证明了一个实质性错误。因此,此问题在单位间隔图上的时间复杂性保持打开状态。我们进一步在混合单位间隔图的集合宽度上提供了更好的算法上限。集团宽度是最通用的结构图参数之一,其中在给出有效表示时,在可解决的时间内仍然可以解决一大批自然问题。不幸的是,集团宽度表示的确切计算是\ np-hard。因此,当这种结合是算法时,尤其是在集团宽度上的良好上限。

Interval graphs, intersection graphs of segments on a real line (intervals), play a key role in the study of algorithms and special structural properties. Unit interval graphs, their proper subclass, where each interval has a unit length, has also been extensively studied. We study mixed unit interval graphs---a generalization of unit interval graphs where each interval has still a unit length, but intervals of more than one type (open, closed, semi-closed) are allowed. This small modification captures a much richer class of graphs. In particular, mixed unit interval graphs are not claw-free, compared to unit interval graphs. Heggernes, Meister, and Papadopoulos defined a representation of unit interval graphs called the bubble model which turned out to be useful in algorithm design. We extend this model to the class of mixed unit interval graphs and demonstrate the advantages of this generalized model by providing a subexponential-time algorithm for solving the MaxCut problem on mixed unit interval graphs. In addition, we derive a polynomial-time algorithm for certain subclasses of mixed unit interval graphs. We point out a substantial mistake in the proof of the polynomiality of the MaxCut problem on unit interval graphs by Boyaci, Ekim, and Shalom (2017). Hence, the time complexity of this problem on unit interval graphs remains open. We further provide a better algorithmic upper-bound on the clique-width of mixed unit interval graphs. Clique-width is one of the most general structural graph parameters, where a large group of natural problems is still solvable in the tractable time when an efficient representation is given. Unfortunately, the exact computation of the clique-width representation is \NP-hard. Therefore, good upper-bounds on clique-width are highly appreciated, in particular, when such a bound is algorithmic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源