论文标题
超越点击:为基于会话的目标行为预测建模多关系项目图
Beyond Clicks: Modeling Multi-Relational Item Graph for Session-Based Target Behavior Prediction
论文作者
论文摘要
基于会话的目标行为预测旨在预测要与特定行为类型相互作用的下一个项目(例如,单击)。尽管现有的基于会话的行为预测的方法利用强大的表示方法学习方法来编码项目在低维空间中的顺序相关性,但它们受到了一些限制。首先,他们只专注于利用相同类型的用户行为进行预测,但忽略了将其他行为数据作为辅助信息的潜力。当目标行为稀疏但重要(例如,购买或共享项目)时,这一点尤为重要。其次,项目到项目的关系是通过一个行为序列分别建模和局部建模的,并且它们缺乏在全球范围内更有效地编码这些关系的原则方法。为了克服这些局限性,我们为基于会话的目标行为预测(即简称MGNN-Spred)提出了一种新型的多关系图神经网络模型。具体而言,我们基于所有会话的所有行为序列构建一个多关系项目图(MRIG),涉及目标和辅助行为类型。基于MRIG,MGNN-SPRED学习了全球项目到项目关系,并进一步获得了用户首选项W.R.T.当前目标和辅助行为序列。最后,MGNN-Spred利用门控机制适应用户表示,以预测与目标行为相互作用的下一个项目。在两个现实世界数据集上进行的广泛实验通过与基于最新会话的预测方法进行比较,证明了MGNN-SPREAD的优越性,从而验证了利用辅助行为和学习项目与项目与MRIG的好处。
Session-based target behavior prediction aims to predict the next item to be interacted with specific behavior types (e.g., clicking). Although existing methods for session-based behavior prediction leverage powerful representation learning approaches to encode items' sequential relevance in a low-dimensional space, they suffer from several limitations. Firstly, they focus on only utilizing the same type of user behavior for prediction, but ignore the potential of taking other behavior data as auxiliary information. This is particularly crucial when the target behavior is sparse but important (e.g., buying or sharing an item). Secondly, item-to-item relations are modeled separately and locally in one behavior sequence, and they lack a principled way to globally encode these relations more effectively. To overcome these limitations, we propose a novel Multi-relational Graph Neural Network model for Session-based target behavior Prediction, namely MGNN-SPred for short. Specifically, we build a Multi-Relational Item Graph (MRIG) based on all behavior sequences from all sessions, involving target and auxiliary behavior types. Based on MRIG, MGNN-SPred learns global item-to-item relations and further obtains user preferences w.r.t. current target and auxiliary behavior sequences, respectively. In the end, MGNN-SPred leverages a gating mechanism to adaptively fuse user representations for predicting next item interacted with target behavior. The extensive experiments on two real-world datasets demonstrate the superiority of MGNN-SPred by comparing with state-of-the-art session-based prediction methods, validating the benefits of leveraging auxiliary behavior and learning item-to-item relations over MRIG.