论文标题
关于平面两个中心问题和圆形船体
On the Planar Two-Center Problem and Circular Hulls
论文作者
论文摘要
考虑到欧几里得飞机中的$ n $点的$ s $ $ n $点,两个中心的问题是找到两个最小半径的一致磁盘,它们的工会涵盖了$ s $的所有点。以前,Eppstein [Soda'97]给出了$ O(n \ log^2n)$预期时间的随机算法,而Chan [CGTA'99]提出了$ O(n \ log^2 N \ log^log^2 \ log n)的确定性算法。在本文中,我们提出了一个$ O(n \ log^2 n)$确定性算法,该算法改善了Chan的确定性算法并与Eppstein的随机结合匹配。如果$ s $处于凸位置,则我们将问题解决$ O(n \ log n \ log \ log n)$确定时间。我们的结果依靠新技术来在点插入和缺失下动态维护圆形船体,这具有独立的兴趣。
Given a set $S$ of $n$ points in the Euclidean plane, the two-center problem is to find two congruent disks of smallest radius whose union covers all points of $S$. Previously, Eppstein [SODA'97] gave a randomized algorithm of $O(n\log^2n)$ expected time and Chan [CGTA'99] presented a deterministic algorithm of $O(n\log^2 n\log^2\log n)$ time. In this paper, we propose an $O(n\log^2 n)$ time deterministic algorithm, which improves Chan's deterministic algorithm and matches the randomized bound of Eppstein. If $S$ is in convex position, then we solve the problem in $O(n\log n\log\log n)$ deterministic time. Our results rely on new techniques for dynamically maintaining circular hulls under point insertions and deletions, which are of independent interest.