论文标题

有条件的对抗摄像机模型匿名

Conditional Adversarial Camera Model Anonymization

论文作者

Andrews, Jerone T. A., Zhang, Yidan, Griffin, Lewis D.

论文摘要

用于捕获特定照相图像的相机模型(模型归因)通常是根据图像中存在的高频模型特异性伪像推断。模型匿名化是转换这些伪像的过程,使得明显的捕获模型被更改。我们提出了一种有条件的对抗方法来学习这种转变。与以前的工作相反,我们将模型匿名化为转换高空间频率信息的过程。我们通过预先训练的双流模型归因分类器的损失来增强目标,该分类器限制了生成网络以改变整个人工制品。定量比较证明了我们框架在限制性的非交互式黑盒设置中的功效。

The model of camera that was used to capture a particular photographic image (model attribution) is typically inferred from high-frequency model-specific artifacts present within the image. Model anonymization is the process of transforming these artifacts such that the apparent capture model is changed. We propose a conditional adversarial approach for learning such transformations. In contrast to previous works, we cast model anonymization as the process of transforming both high and low spatial frequency information. We augment the objective with the loss from a pre-trained dual-stream model attribution classifier, which constrains the generative network to transform the full range of artifacts. Quantitative comparisons demonstrate the efficacy of our framework in a restrictive non-interactive black-box setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源