论文标题
从宇宙数据中的无菌中微子约束,$ν_{e} $消失数据和$ν_μ\rightarrowν_{
Direct comparison of sterile neutrino constraints from cosmological data, $ν_{e}$ disappearance data and $ν_μ\rightarrowν_{e}$ appearance data in a $3+1$ model
论文作者
论文摘要
我们介绍了对中微子振荡实验和普朗克数据的无菌中微子的约束的定量,直接比较,假设假设标准宇宙学演化。我们扩展了$ 1+1 $的模型,该模型用于将来自Planck数据的95%CL与$ν_{e} $ - 消失测量结果与$ 3+1 $型号进行比较。这使我们可以将Planck约束与通过$ν_μ\rightarrowν_{e} $外观搜索获得的约束,这些搜索对一个以上的活性 - 微分混合角度敏感。我们发现,宇宙学数据完全排除了LSND,Miniboone和Neutmon-4合作所发布的允许区域,以及95%CL的Gallium and Rector异常的允许区域。与Daya Bay $ν_{E} $ - 消失搜索相比,Planck数据更强烈地排除了$ |δm^{2} _ {41} _ {41} | \ of 0.1 \ of 0.1 \,\ yathrm {ev} 0.2 \,\ Mathrm {ev} $,Daya Bay排除在这些值以下。与Daya Bay/Bugey/Minos排除区域的组合在$ν_μ\rightarrowν_{e} $外观上相比,Planck数据更加强烈地排除了$Δm^{2} _ {2} _ {41} _ {41} \ 5 \ 5 \ 5 \ 5 \ times 10^{ - 2} { - 2}} { - 2} \,\,\,\,\ Mathranctiuly Daya Bay/Bugey/Minos组合变得可比此值可比。
We present a quantitative, direct comparison of constraints on sterile neutrinos derived from neutrino oscillation experiments and from Planck data, interpreted assuming standard cosmological evolution. We extend a $1+1$ model, which is used to compare exclusions contours at the 95% CL derived from Planck data to those from $ν_{e}$-disappearance measurements, to a $3+1$ model. This allows us to compare the Planck constraints with those obtained through $ν_μ\rightarrowν_{e}$ appearance searches, which are sensitive to more than one active-sterile mixing angle. We find that the cosmological data fully exclude the allowed regions published by the LSND, MiniBooNE and Neutrino-4 collaborations, and those from the gallium and rector anomalies, at the 95% CL. Compared to the exclusion regions from the Daya Bay $ν_{e}$-disappearance search, the Planck data are more strongly excluding above $|Δm^{2}_{41}|\approx 0.1\, \mathrm{eV}^{2}$ and $m_\mathrm{eff}^\mathrm{sterile}\approx 0.2\, \mathrm{eV}$, with the Daya Bay exclusion being stronger below these values. Compared to the combined Daya Bay/Bugey/MINOS exclusion region on $ν_μ\rightarrowν_{e}$ appearance, the Planck data is more strongly excluding above $Δm^{2}_{41}\approx 5\times 10^{-2}\,\mathrm{eV}^{2}$, with the exclusion strengths of the Planck data and the Daya Bay/Bugey/MINOS combination becoming comparable below this value.