论文标题

对基于蒙特卡洛的超高神疗法的评估,用于工业嵌入式软件应用的交互测试

An Evaluation of Monte Carlo-Based Hyper-Heuristic for Interaction Testing of Industrial Embedded Software Applications

论文作者

Ahmed, Bestoun S., Enoiu, Eduard, Afzal, Wasif, Zamli, Kamal Z.

论文摘要

超女性是一种新的方法,用于元元素算法的自适应杂交,以得出解决优化问题的一般算法。这项工作着重于选择类型的超高式选择类型,称为与计数器(EMCQ)的指数蒙特卡洛。当前的实现依赖于可以适得其反的无内存选择,因为所选的搜索操作员可能不会(历史上)是当前搜索实例的最佳性能运算符。在解决此问题时,我们建议将内存整合到EMCQ中,以使用基于Q学习机制的加固学习(称为Q-EMCQ)进行组合T-WISE测试套件。组合测试在工业计划上的有限应用可能会影响Q-EMCQ等技术的使用。因此,有必要针对相关的工业软件评估这种方法,以表明涵盖代码所需的互动程度以及查找故障。我们在37个用功能框图(FBD)语言编写的现实世界工业计划上应用了Q-EMCQ,该计划用于在Bombardier Transportation Sweden AB开发火车控制管理系统。这项研究的结果表明,Q-EMCQ是用于测试案例生成的有效技术。此外,与处理最小化问题的T-Wise测试套件的生成不同,我们还遇到了Q-EMCQ的最大化问题,涉及一般模块聚类,以证明我们方法的有效性。

Hyper-heuristic is a new methodology for the adaptive hybridization of meta-heuristic algorithms to derive a general algorithm for solving optimization problems. This work focuses on the selection type of hyper-heuristic, called the Exponential Monte Carlo with Counter (EMCQ). Current implementations rely on the memory-less selection that can be counterproductive as the selected search operator may not (historically) be the best performing operator for the current search instance. Addressing this issue, we propose to integrate the memory into EMCQ for combinatorial t-wise test suite generation using reinforcement learning based on the Q-learning mechanism, called Q-EMCQ. The limited application of combinatorial test generation on industrial programs can impact the use of such techniques as Q-EMCQ. Thus, there is a need to evaluate this kind of approach against relevant industrial software, with a purpose to show the degree of interaction required to cover the code as well as finding faults. We applied Q-EMCQ on 37 real-world industrial programs written in Function Block Diagram (FBD) language, which is used for developing a train control management system at Bombardier Transportation Sweden AB. The results of this study show that Q-EMCQ is an efficient technique for test case generation. Additionally, unlike the t-wise test suite generation, which deals with the minimization problem, we have also subjected Q-EMCQ to a maximization problem involving the general module clustering to demonstrate the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源