论文标题
多维汉堡方程的源解
Source-solutions for the multi-dimensional Burgers equation
论文作者
论文摘要
我们在最近的一次合作中表明,当在Lebesgue Space L 1(R N)中获取初始数据U(0)时,多维汉堡方程的Cauchy问题被很好地置了,更普遍地在L P(r n)中。我们在这里调查了u(0)是一个有界度量的情况,重点是n = 2。这是由使用可集成数据的解决方案的渐近行为的描述,例如t $ \ rightarrow $ +$ \ infty $。 MSC2010:35F55,35L65。符号。我们表示$ \ times $ p在Lebesgue L P(r n)中。 r m上的有限度量的空间为m(r m),其标准表示$ \ times $M。DIRAC质量x $ \ in $ r n为$δ$ x或$Δ$ x $ x = x。如果$ν$ $ \ in $ m(r m)和$ m $ $ \ in $ m(r q),那么$ν$ $ \ otimes $ $ $ $ $ $是由$ m+q唯一由$ $ c $ν$ \ otimes $ $ $ $ $ $ $ $ $ $ $ $ $ n $ nne $ nne $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ c( (x)g(y)。实际线的闭合半部分表示R +和R-。 * u.m.p.a.,umr cnrs-ensl \#5669。46全部{é} e d'utalie,
We have shown in a recent collaboration that the Cauchy problem for the multi-dimensional Burgers equation is well-posed when the initial data u(0) is taken in the Lebesgue space L 1 (R n), and more generally in L p (R n). We investigate here the situation where u(0) is a bounded measure instead, focusing on the case n = 2. This is motivated by the description of the asymptotic behaviour of solutions with integrable data, as t $\rightarrow$ +$\infty$. MSC2010: 35F55, 35L65. Notations. We denote $\times$ p the norm in Lebesgue L p (R n). The space of bounded measure over R m is M (R m) and its norm is denoted $\times$ M. The Dirac mass at X $\in$ R n is $δ$ X or $δ$ x=X. If $ν$ $\in$ M (R m) and $μ$ $\in$ M (R q), then $ν$ $\otimes$ $μ$ is the measure over R m+q uniquely defined by $ν$ $\otimes$ $μ$, $ψ$ = $ν$, f $μ$, g whenever $ψ$(x, y) $\not\equiv$ f (x)g(y). The closed halves of the real line are denoted R + and R --. * U.M.P.A., UMR CNRS-ENSL \# 5669. 46 all{é}e d'Italie,