论文标题

用于随机Fitzhugh-Nagumo方程的流行脉冲解决方案的多尺度分析

Multiscale analysis for traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations

论文作者

Eichinger, Katharina, Gnann, Manuel V., Kuehn, Christian

论文摘要

我们研究了带有附加噪声的随机Fitzhughnagumo方程的行进脉冲解决方案的稳定性。特别注意小噪声对经典确定性稳定快速行进脉冲的影响。我们的方法是基于通过求解标量随机的普通微分方程(SODE)来适应行驶波的速度,并将跟踪扰动跟踪到符合标量随机偏微分方程(SPDE)系统的波浪,并耦合到标量的普通微分方程(ODE)。这种方法最近已被Krüger和Stannat用于标量随机双向反应扩散方程,例如Nagumo方程。我们的SPDE与ODE耦合的情况的主要区别在于,线性化具有与假想轴平行的必不可少的频谱,因此仅生成强烈连续的半群。此外,围绕波动波周围的线性化不再是自我相结合的,因此,在相应的内部产物中,不能期望波周围的波动是正交的。我们证明,可以通过使用Riesz而不是仓鼠和Hupkes的一系列论文中使用的正交光谱预测来克服这个问题。我们希望我们的方法也可以应用于更普遍的情况下的行进波和其他模式,例如线性化的SPDES系统仅产生强烈连续的半群。这提供了相关的概括,因为这些系统在许多应用中很普遍。

We investigate the stability of traveling-pulse solutions to the stochastic FitzHughNagumo equations with additive noise. Special attention is given to the effect of small noise on the classical deterministically stable fast traveling pulse. Our method is based on adapting the velocity of the traveling wave by solving a scalar stochastic ordinary differential equation (SODE) and tracking perturbations to the wave meeting a system of a scalar stochastic partial differential equation (SPDE) coupled to a scalar ordinary differential equation (ODE). This approach has been recently employed by Krüger and Stannat for scalar stochastic bistable reaction-diffusion equations such as the Nagumo equation. A main difference in our situation of an SPDE coupled to an ODE is that the linearization has essential spectrum parallel to the imaginary axis and thus only generates a strongly continuous semigroup. Furthermore, the linearization around the traveling wave is not self-adjoint anymore, so that fluctuations around the wave cannot be expected to be orthogonal in a corresponding inner product. We demonstrate that this problem can be overcome by making use of Riesz instead of orthogonal spectral projections as recently employed in a series of papers by Hamster and Hupkes in case of analytic semigroups. We expect that our approach can also be applied to traveling waves and other patterns in more general situations such as systems of SPDEs with linearizations only generating a strongly continuous semigroup. This provides a relevant generalization as these systems are prevalent in many applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源